Afficher la notice abrégée

hal.structure.identifierInstitut de Mécanique et d'Ingénierie de Bordeaux [I2M]
hal.structure.identifierLaboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
dc.contributor.authorGUERCHAIS, Raphaël
hal.structure.identifierInstitut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.contributor.authorSAINTIER, Nicolas
hal.structure.identifierLaboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
dc.contributor.authorMOREL, Franck
hal.structure.identifierLaboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
dc.contributor.authorROBERT, Camille
dc.date.accessioned2021-05-14T09:58:48Z
dc.date.available2021-05-14T09:58:48Z
dc.date.issued2014-10
dc.identifier.issn0142-1123
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/77977
dc.descriptionThis study aims to analyse the influence of geometrical defects (notches and holes) on the high cycle fatigue behaviour of an electrolytic copper based on finite element simulations of 2D polycrystalline aggregates. In order to investigate the role of each source of anisotropy on the mechanical response at the grain scale, three different material constitutive models are assigned successively to the grains: isotropic elasticity, cubic elasticity and crystal plasticity in addition to the cubic elasticity. The significant influence of the elastic anisotropy on the mechanical response of the grains is highlighted. When considering smooth microstructures, the crystal plasticity have has a slight effect in comparison with the cubic elasticity influence. However, in the case of notched microstructures, it has been shown that the influence of the plasticity is no more negligible. Finally, the predictions of three fatigue criteria are analysed. Their ability to predict the defect size effect on the fatigue strength is evaluated thanks to a comparison with experimental data from the literature.
dc.description.abstractEnThis study aims to analyse the influence of geometrical defects (notches and holes) on the high cycle fatigue behaviour of an electrolytic copper based on finite element simulations of 2D polycrystalline aggregates. In order to investigate the role of each source of anisotropy on the mechanical response at the grain scale, three different material constitutive models are assigned successively to the grains: isotropic elasticity, cubic elasticity and crystal plasticity in addition to the cubic elasticity. The significant influence of the elastic anisotropy on the mechanical response of the grains is highlighted. When considering smooth microstructures, the crystal plasticity have has a slight effect in comparison with the cubic elasticity influence. However, in the case of notched microstructures, it has been shown that the influence of the plasticity is no more negligible. Finally, the predictions of three fatigue criteria are analysed. Their ability to predict the defect size effect on the fatigue strength is evaluated thanks to a comparison with experimental data from the literature.
dc.language.isoen
dc.publisherElsevier
dc.subject.enHigh cycle fatigue
dc.subject.enDefect
dc.subject.enMicrostructure modelling
dc.subject.enAnisotropic elasticity
dc.subject.enCrystal plasticity
dc.title.enMicromechanical investigation of the influence of defects in high cycle fatigue
dc.typeArticle de revue
dc.identifier.doi10.1016/j.ijfatigue.2014.01.005
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des matériaux [physics.class-ph]
bordeaux.journalInternational Journal of Fatigue
bordeaux.page159-172
bordeaux.volume67
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-01084156
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01084156v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=International%20Journal%20of%20Fatigue&rft.date=2014-10&rft.volume=67&rft.spage=159-172&rft.epage=159-172&rft.eissn=0142-1123&rft.issn=0142-1123&rft.au=GUERCHAIS,%20Rapha%C3%ABl&SAINTIER,%20Nicolas&MOREL,%20Franck&ROBERT,%20Camille&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée