Afficher la notice abrégée

dc.relation.isnodouble6dc5689c-becb-4fde-9b92-5bd8d446a7a7*
hal.structure.identifierInstitut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.contributor.authorKOPP, Jean-Benoit
IDREF: 17687335X
hal.structure.identifierEcole et Observatoire des Sciences de la Terre [EOST]
dc.contributor.authorSCHMITTBUHL, Jean
hal.structure.identifierInstitut des Molécules et Matériaux du Mans [IMMM]
dc.contributor.authorNOEL, Olivier
hal.structure.identifierUniversité Louis Pasteur - Strasbourg I
dc.contributor.authorFOND, Christophe
dc.date.accessioned2021-05-14T09:56:59Z
dc.date.available2021-05-14T09:56:59Z
dc.date.issued2015-05
dc.identifier.issn0376-9429
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/77848
dc.description.abstractEnProfilometric imaging of fracture surfaces of rubber toughened polymer has been performed at two different resolutions (a) at large scales [10 μ\upmu m–25 mm] using an opto-mechanical profilometer and (b) at small scales [0.195 μ\upmu m–0.48 mm] using an interferometric optical microscope. We introduced a self-affine geometrical model using two parameters: the Hurst exponent and the topothesy. We showed that for rubber toughened materials the approximation of the created surface by a mean flat plane leads to a poor estimation of the dynamic fracture energy GIdcG_{Idc}. The description of the created rough fracture surface by a self-affine model is shown to provide a significantly better approximation. A new and original geometrical method is introduced to estimate self-affine parameters: the 3D surface scaling method. Hurst exponents are shown to be unique, χ=0.6±0.1\chi =0.6\pm 0.1 for the different fracture zones and measurement scales. Topothesy ratios indicate a significant difference of fracture surface roughness amplitude depending on the observation resolution when the detrending technique is not correctly introduced.
dc.language.isoen
dc.publisherSpringer Verlag
dc.subject.enSurface roughness
dc.subject.enDynamic fracture
dc.subject.enPolymers
dc.subject.enSelf-affinity
dc.subject.enHurst exponent
dc.subject.enTopothesy
dc.subject.enRapid crack propagation
dc.subject.enFracture energy
dc.title.enA self-affine geometrical model of dynamic RT-PMMA fractures: implications for fracture energy measurements
dc.typeArticle de revue
dc.identifier.doi10.1007/s10704-015-0025-2
dc.subject.halPhysique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
dc.subject.halSciences de l'ingénieur [physics]/Matériaux
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des matériaux [physics.class-ph]
dc.subject.halPhysique [physics]/Physique [physics]/Géophysique [physics.geo-ph]
bordeaux.journalInternational Journal of Fracture
bordeaux.page141-152
bordeaux.volume193
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.issue2
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-01165645
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01165645v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=International%20Journal%20of%20Fracture&rft.date=2015-05&rft.volume=193&rft.issue=2&rft.spage=141-152&rft.epage=141-152&rft.eissn=0376-9429&rft.issn=0376-9429&rft.au=KOPP,%20Jean-Benoit&SCHMITTBUHL,%20Jean&NOEL,%20Olivier&FOND,%20Christophe&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée