Linking Discrete and Stochastic Models: The Chemical Master Equation as a Bridge between Process Hitting and Proper Generalized Decomposition
CHACELLOR, Courtney
Institut de Recherche en Communications et en Cybernétique de Nantes [IRCCyN]
Institut de Recherche en Génie Civil et Mécanique [GeM]
Leer más >
Institut de Recherche en Communications et en Cybernétique de Nantes [IRCCyN]
Institut de Recherche en Génie Civil et Mécanique [GeM]
CHACELLOR, Courtney
Institut de Recherche en Communications et en Cybernétique de Nantes [IRCCyN]
Institut de Recherche en Génie Civil et Mécanique [GeM]
Institut de Recherche en Communications et en Cybernétique de Nantes [IRCCyN]
Institut de Recherche en Génie Civil et Mécanique [GeM]
MAGNIN, Morgan
Institut de Recherche en Communications et en Cybernétique de Nantes [IRCCyN]
National Institute of Informatics [NII]
< Leer menos
Institut de Recherche en Communications et en Cybernétique de Nantes [IRCCyN]
National Institute of Informatics [NII]
Idioma
en
Article de revue
Este ítem está publicado en
Computational Methods in Systems Biology. 2013, vol. 8130, p. 50-63
Resumen en inglés
Modeling frameworks bring structure and analysis tools to large and non-intuitive systems but come with certain inherent assumptions and limitations, sometimes to an inhibitive extent. By building bridges in existing models, ...Leer más >
Modeling frameworks bring structure and analysis tools to large and non-intuitive systems but come with certain inherent assumptions and limitations, sometimes to an inhibitive extent. By building bridges in existing models, we can exploit the advantages of each, widening the range of analysis possible for larger, more detailed models of gene regulatory networks. In this paper, we create just such a link between Process Hitting [6,7,8], a recently introduced discrete framework, and the Chemical Master Equation in such a way that allows the application of powerful numerical techniques, namely Proper Generalized Decomposition [1,2,3], to overcome the curse of dimensionality. With these tools in hand, one can exploit the formal analysis of discrete models without sacrificing the ability to obtain a full space state solution, widening the scope of analysis and interpretation possible. As a demonstration of the utility of this methodology, we have applied it here to the p53-mdm2 network [4,5], a widely studied biological regulatory network.< Leer menos
Palabras clave en italiano
Stochastic models
Chemical master equation
Process hitting
Proper generalized decomposition
Orígen
Importado de HalCentros de investigación