Afficher la notice abrégée

hal.structure.identifierInstitut de Recherche en Génie Civil et Mécanique [GeM]
dc.contributor.authorABISSET, Emmanuelle
hal.structure.identifierInstitut de Recherche en Génie Civil et Mécanique [GeM]
dc.contributor.authorMEZHER, Rabih
hal.structure.identifierLaboratoire de thermocinétique [Nantes] [LTN]
dc.contributor.authorLE CORRE, Steven
hal.structure.identifierLaboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
dc.contributor.authorAMMAR, Amine
hal.structure.identifierInstitut de Recherche en Génie Civil et Mécanique [GeM]
dc.contributor.authorCHINESTA, Francisco
dc.date.accessioned2021-05-14T09:55:23Z
dc.date.available2021-05-14T09:55:23Z
dc.date.issued2013-07
dc.identifier.issn1099-4300
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/77688
dc.descriptionWhen suspensions involving rigid rods become too concentrated, standard dilute theories fail to describe their behavior. Rich microstructures involving complex clusters are observed, and no model allows describing its kinematics and rheological effects. In previous works the authors propose a first attempt to describe such clusters from a micromechanical model, but neither its validity nor the rheological effects were addressed. Later, authors applied this model for fitting the rheological measurements in concentrated suspensions of carbon nanotubes (CNTs) by assuming a rheo-thinning behavior at the constitutive law level. However, three major issues were never addressed until now: (i) the validation of the micromechanical model by direct numerical simulation; (ii) the establishment of a general enough multi-scale kinetic theory description, taking into account interaction, diffusion and elastic effects; and (iii) proposing a numerical technique able to solve the kinetic theory description. This paper focuses on these three major issues, proving the validity of the micromechanical model, establishing a multi-scale kinetic theory description and, then, solving it by using an advanced and efficient separated representation of the cluster distribution function. These three aspects, never until now addressed in the past, constitute the main originality and the major contribution of the present paper.
dc.description.abstractEnWhen suspensions involving rigid rods become too concentrated, standard dilute theories fail to describe their behavior. Rich microstructures involving complex clusters are observed, and no model allows describing its kinematics and rheological effects. In previous works the authors propose a first attempt to describe such clusters from a micromechanical model, but neither its validity nor the rheological effects were addressed. Later, authors applied this model for fitting the rheological measurements in concentrated suspensions of carbon nanotubes (CNTs) by assuming a rheo-thinning behavior at the constitutive law level. However, three major issues were never addressed until now: (i) the validation of the micromechanical model by direct numerical simulation; (ii) the establishment of a general enough multi-scale kinetic theory description, taking into account interaction, diffusion and elastic effects; and (iii) proposing a numerical technique able to solve the kinetic theory description. This paper focuses on these three major issues, proving the validity of the micromechanical model, establishing a multi-scale kinetic theory description and, then, solving it by using an advanced and efficient separated representation of the cluster distribution function. These three aspects, never until now addressed in the past, constitute the main originality and the major contribution of the present paper.
dc.language.isoen
dc.publisherMDPI
dc.subject.enkinetic theory
dc.subject.enconcentrated suspensions
dc.subject.enaggregates
dc.subject.enFokker-Planck equation
dc.subject.enproper generalized decomposition
dc.subject.enmicromechanics
dc.title.enKinetic Theory Microstructure Modeling in Concentrated Suspensions
dc.typeArticle de revue
dc.identifier.doi10.3390/e15072805
dc.subject.halInformatique [cs]/Ingénierie assistée par ordinateur
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des fluides [physics.class-ph]
bordeaux.journalEntropy
bordeaux.page2805-2832
bordeaux.volume15
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.issue7
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-01207104
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01207104v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Entropy&rft.date=2013-07&rft.volume=15&rft.issue=7&rft.spage=2805-2832&rft.epage=2805-2832&rft.eissn=1099-4300&rft.issn=1099-4300&rft.au=ABISSET,%20Emmanuelle&MEZHER,%20Rabih&LE%20CORRE,%20Steven&AMMAR,%20Amine&CHINESTA,%20Francisco&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée