Vibration Analysis of Euler-Bernoulli Beams Partially Immersed in a Viscous Fluid
ABASSI, Wafik
Laboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
Laboratoire de génie des procédés - environnement - agroalimentaire [GEPEA]
Laboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
Laboratoire de génie des procédés - environnement - agroalimentaire [GEPEA]
EL BAROUDI, Adil
Laboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
Institut de Recherche Mathématique de Rennes [IRMAR]
Laboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
Institut de Recherche Mathématique de Rennes [IRMAR]
ABASSI, Wafik
Laboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
Laboratoire de génie des procédés - environnement - agroalimentaire [GEPEA]
Laboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
Laboratoire de génie des procédés - environnement - agroalimentaire [GEPEA]
EL BAROUDI, Adil
Laboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
Institut de Recherche Mathématique de Rennes [IRMAR]
< Réduire
Laboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
Institut de Recherche Mathématique de Rennes [IRMAR]
Langue
en
Article de revue
Ce document a été publié dans
Physics Research International. 2016, vol. 2016, p. 6761372-1 - 6761372-14
Résumé en anglais
The vibrational characteristics of a microbeam are well known to strongly depend on the fluid in which the beam is immersed. In this paper, we present a detailed theoretical study of the modal analysis of microbeams partially ...Lire la suite >
The vibrational characteristics of a microbeam are well known to strongly depend on the fluid in which the beam is immersed. In this paper, we present a detailed theoretical study of the modal analysis of microbeams partially immersed in a viscous fluid. A fixed-free microbeamvibrating in a viscous fluid is modeled using the Euler-Bernoulli equation for the beams.The unsteady Stokes equations are solved using a Helmholtz decomposition technique in a two-dimensional plane containing the microbeams cross sections.The symbolic softwareMathematica is used in order to find the coupled vibration frequencies of beams with two portions.The frequency equation is deduced and analytically solved.The finite element method using ComsolMultiphysics software results is compared with present method for validation and an acceptable match between them was obtained. In the eigenanalysis, the frequency equation is generated by satisfying all boundary conditions. It is shown that the present formulation is an appropriate and new approach to tackle the problem with good accuracy.< Réduire
Mots clés en anglais
microbeams
Vibration Analysis
Euler-Bernoulli
Origine
Importé de halUnités de recherche