Afficher la notice abrégée

hal.structure.identifierInstitut de Recherche de l'Ecole Navale [IRENAV]
dc.contributor.authorAUBIN, Nicolas
hal.structure.identifierInstitut de Recherche de l'Ecole Navale [IRENAV]
dc.contributor.authorAUGIER, Benoit
hal.structure.identifierInstitut de Recherche de l'Ecole Navale [IRENAV]
dc.contributor.authorBOT, Patrick
hal.structure.identifierInstitut de Recherche de l'Ecole Navale [IRENAV]
dc.contributor.authorHAUVILLE, Frédéric
hal.structure.identifierIncidence Sails [Incidence-sails Brest]
dc.contributor.authorFLOCH, Ronan
dc.date.accessioned2021-05-14T09:50:28Z
dc.date.available2021-05-14T09:50:28Z
dc.date.issued2016
dc.identifier.issn0167-6105
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/77286
dc.description.abstractEnThis work presents a full-scale experimental study of a yacht rig and sails in real upwind sailing conditions and a comparison with Fluid Structure Interaction (FSI) simulations with the ARAVANTI model (Finite Element Method for the structure and Vortex Lattice Method for the fluid). An specific on-board instrumentation system simultaneously measures loads in the rig and sails, sailing data (wind, boat attitude and speed) and the shape of sails in real navigation conditions (flying shape). Flying shape parameters are extracted using the camera-based VSPARS system to characterize the effects of sail trims and to be compared with the results of the simulation. The potential flow solver gives fast and accurate predictions of both the flying shape and the loads in the rig in most conditions. The inviscid approach, commonly used in the early stage of design, must be checked, as in particular cases where the sails are heavily loaded, flow separation is significant and results from a potential flow solver are inaccurate. A new version of the model including the heel angle as an additional degree of freedom in the structural solver enables to detect when the inviscid flow approach overestimates the aerodynamic load. This upgrade improves the utility and reliability of the inviscid flow approach which remains relevant at the early stages of design as it is much more cost-effective than RANS models.
dc.language.isoen
dc.publisherElsevier
dc.subject.enFluid–structure interaction
dc.subject.enNumerical simulation
dc.subject.enYacht sails
dc.subject.enFull scale measurements
dc.subject.enInstrumented boat
dc.subject.enInviscid flow
dc.subject.enAerodynamic forces
dc.subject.enSails flying shape
dc.title.enInviscid approach for upwind sails aerodynamics. How far can we go?
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jweia.2016.06.005
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des fluides [physics.class-ph]
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des structures [physics.class-ph]
bordeaux.journalJournal of Wind Engineering and Industrial Aerodynamics
bordeaux.page208-215
bordeaux.volume155
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-01591858
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01591858v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Wind%20Engineering%20and%20Industrial%20Aerodynamics&rft.date=2016&rft.volume=155&rft.spage=208-215&rft.epage=208-215&rft.eissn=0167-6105&rft.issn=0167-6105&rft.au=AUBIN,%20Nicolas&AUGIER,%20Benoit&BOT,%20Patrick&HAUVILLE,%20Fr%C3%A9d%C3%A9ric&FLOCH,%20Ronan&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée