Afficher la notice abrégée

hal.structure.identifierInstitut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.contributor.authorJEBAHI, Mohamed
hal.structure.identifierInstitut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.contributor.authorDAU, Frederic
hal.structure.identifierInstitut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.contributor.authorIORDANOFF, Ivan
hal.structure.identifierInstitut de Physique de Rennes [IPR]
dc.contributor.authorGUIN, Jean-Pierre
dc.date.accessioned2021-05-14T09:49:06Z
dc.date.available2021-05-14T09:49:06Z
dc.date.issued2017
dc.identifier.issn0029-5981
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/77174
dc.description.abstractEnThe discrete element method (DEM) presents an alternative way to model complex mechanical problems of silica glass, such as brittle fracture. Since discontinuities are naturally considered by DEM, no complex transition procedure from continuum phase to discontinuum one is required. However, to ensure that DEM can properly reproduce the silica glass cracking mechanisms, it is necessary to correctly model the different features characterizing its mechanical behavior before fracture. Particularly, it is necessary to correctly model the densification process of this material, which is known to strongly influence the fracture mechanisms. The present paper proposes a new and very promising way to model such process, which is assumed to occur only under hydrostatic pressure. An accurate predictive-corrective densification model is developed. This model shows a great flexibility to reproduce extremely complex densification features. Furthermore, it involves only one calibration parameter, which makes it very easy to apply. This new model represents a major step towards accurate modeling of materials permanent deformation with the discrete element method, which has long been a huge challenge in applying this method for continuum problems.
dc.description.sponsorshipComportement Mécanique des verres sous choc produit par laser, une approche expérimentale et numérique multi échelles. - ANR-14-CE07-0020
dc.language.isoen
dc.publisherWiley
dc.subject.enDiscrete element method
dc.subject.enCohesive beam bond
dc.subject.enSilica glass
dc.subject.enDensification
dc.subject.enNonlinear behavior
dc.title.enVirial stress-based model to simulate the silica glass densification with the discrete element method
dc.typeArticle de revue
dc.identifier.doi10.1002/nme.5589
dc.subject.halPhysique [physics]
dc.subject.halPhysique [physics]/Matière Condensée [cond-mat]
bordeaux.journalInternational Journal for Numerical Methods in Engineering
bordeaux.page1909-1925
bordeaux.volume112
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.issue13
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-01681153
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01681153v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=International%20Journal%20for%20Numerical%20Methods%20in%20Engineering&rft.date=2017&rft.volume=112&rft.issue=13&rft.spage=1909-1925&rft.epage=1909-1925&rft.eissn=0029-5981&rft.issn=0029-5981&rft.au=JEBAHI,%20Mohamed&DAU,%20Frederic&IORDANOFF,%20Ivan&GUIN,%20Jean-Pierre&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée