Texture control of 316L parts by modulation of the melt pool morphology in selective laser melting
ANDREAU, OLIVIER
Commissariat à l'énergie atomique et aux énergies alternatives [CEA]
Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
Voir plus >
Commissariat à l'énergie atomique et aux énergies alternatives [CEA]
Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ANDREAU, OLIVIER
Commissariat à l'énergie atomique et aux énergies alternatives [CEA]
Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
Commissariat à l'énergie atomique et aux énergies alternatives [CEA]
Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
PESSARD, Etienne
Laboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
< Réduire
Laboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
Langue
en
Article de revue
Ce document a été publié dans
Journal of Materials Processing Technology. 2019, vol. 264, p. 21-31
Elsevier
Résumé en anglais
In this study, 316L parts were fabricated with the selective laser melting additive layer manufacturing process using unidirectional laser scan to control their texture. The melt pool shape, microstructure and texture of ...Lire la suite >
In this study, 316L parts were fabricated with the selective laser melting additive layer manufacturing process using unidirectional laser scan to control their texture. The melt pool shape, microstructure and texture of three different cubic samples were analyzed and quantified using optical microscopy and electron back-scattered diffraction. The samples scanned along the shielding gas flow direction were shown to exhibit shallow conduction melt pools together with a strong {110}<001> Goss texture along the laser scanning direction. The sample prepared with a laser scan perpendicular to the gas flow direction had deeper melt pools, with a weaker {110} <001> Goss texture in addition to a <100> fiber texture parallel to the scanning direction. Correlations were proposed between the melt-pool geometry and overlap and the resulting texture. The decrease of the melt pool depth was assumed to be linked to local attenuation of the laser beam effective power density transmitted to the powder bed.< Réduire
Mots clés en anglais
Crystallographic texture
Selective laser melting
Laser deposition
Austenitic stainless steel
Solidification microstructures
Origine
Importé de halUnités de recherche