Classification des Signaux sur Graphes par Mesures Spectrales Algébriques
Langue
fr
Communication dans un congrès avec actes
Ce document a été publié dans
XXVI Colloque Gretsi 2017, Gretsi 2017, 2017-09, Juan-Les-Pins. 2017-09p. 1-4
Résumé
La notion de mesure de similarité est très importante dans de nombreux domaines tels que l’apprentissage statistique, la fouille de données ou les sciences cognitives. Dans cet article, nous nous intéressons à la similarité ...Lire la suite >
La notion de mesure de similarité est très importante dans de nombreux domaines tels que l’apprentissage statistique, la fouille de données ou les sciences cognitives. Dans cet article, nous nous intéressons à la similarité des signaux sur graphes et nous proposons deux nouvelles mesures de similarité spectrales, compactes et efficaces, basées sur la comparaison des spectres propres des graphes, appelées Covariance Spectrale (CS) et Similarité Spectrale Conjointe (SSC). Combinées à un noyau de diffusion sur graphe, ces nouvelles mesures ont permis d’obtenir des performances de classification excellentes sur des données moléculaires réelles, montrant ainsi la pertinence des valeurs propres pour la classification des signaux sur graphes. Les résultats sont comparés à ceux obtenus par les algorithmes k-NN et SVM appliqués sur des graphes projetés dans un espace vectoriel.< Réduire
Origine
Importé de halUnités de recherche