Afficher la notice abrégée

hal.structure.identifierEast China Normal University [Shangaï] [ECNU]
hal.structure.identifierKey Laboratory of Big Data Analysis and Processing
dc.contributor.authorXU, Tao
hal.structure.identifierKey Laboratory of Big Data Analysis and Processing
dc.contributor.authorZHANG, Xihui
hal.structure.identifierInstitut de Recherche de l'Ecole Navale [IRENAV]
dc.contributor.authorCLARAMUNT, Christophe
hal.structure.identifierEast China Normal University [Shangaï] [ECNU]
dc.contributor.authorXIANG, Li
dc.date.accessioned2021-05-14T09:42:28Z
dc.date.available2021-05-14T09:42:28Z
dc.date.issued2018-06
dc.identifier.issn0198-9715
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/76739
dc.description.abstractWith the dramatic development of location-based services, a large amount of vehicle trajectory data are available and applied to different areas,while there are still many research challenges left, one of thembeing data access issues. Most of existing tree-shape indexing schemes cannot facilitate maintenance and management of very large vehicle trajectory data. Howto retrieve vehicle trajectory information efficiently requiresmore efforts. Accordingly, this paper presents a trip-oriented data indexing scheme, named TripCube, for massive vehicle trajectory data. Its principle is to represent vehicle trajectory data as trip information records and develop a three-dimensional cube-shape indexing structure to achieve trip-oriented trajectory data retrieval. In particular, the approach is implemented and applied to vehicle trajectory data in the city of Shanghai including N100 million locational records per day collected from about 13,000 taxis. TripCube is compared to two existing trajectory data indexing structures in our experiments, and the result exhibits that TripCube outperforms others.
dc.language.isoen
dc.publisherElsevier
dc.subjectSpatio-temporal data management
dc.subjectIndexing structure
dc.subjectVehicle trip
dc.subjectVehicle trajectory data
dc.titleTripCube: A Trip-oriented vehicle trajectory data indexing structure
dc.typeArticle de revue
dc.identifier.doi10.1016/j.compenvurbsys.2017.08.005
dc.subject.halInformatique [cs]
bordeaux.journalComputers, Environment and Urban Systems
bordeaux.page21-28
bordeaux.volume67
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-02139371
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02139371v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.title=TripCube:%20A%20Trip-oriented%20vehicle%20trajectory%20data%20indexing%20structure&rft.atitle=TripCube:%20A%20Trip-oriented%20vehicle%20trajectory%20data%20indexing%20structure&rft.jtitle=Computers,%20Environment%20and%20Urban%20Systems&rft.date=2018-06&rft.volume=67&rft.spage=21-28&rft.epage=21-28&rft.eissn=0198-9715&rft.issn=0198-9715&rft.au=XU,%20Tao&ZHANG,%20Xihui&CLARAMUNT,%20Christophe&XIANG,%20Li&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée