HCF of AA7050 alloy containing surface defects: Study of the statistical size effect
Langue
en
Article de revue
Ce document a été publié dans
International Journal of Fatigue. 2018-05, vol. 110, p. 81-94
Elsevier
Résumé
This work investigates the effect of artificial surface defects on the fatigue limit of a 7050 Aluminum alloy (AlZn6CuMgZr). A large fatigue testing campaign under fully reversed plane bending loading is undertaken on ...Lire la suite >
This work investigates the effect of artificial surface defects on the fatigue limit of a 7050 Aluminum alloy (AlZn6CuMgZr). A large fatigue testing campaign under fully reversed plane bending loading is undertaken on specimen with artificial surface hemispherical defects. The defect number was varied from 1 to 44 defects per specimen and the diameter size ranged from 60 μm to 800 μm. The test results allow the characterization of both the defect effect and scale effect on the fatigue behavior of the material. A probabilistic approach based on the weakest link concept together with a fatigue crack initiation criterion are used to account for the stress distribution and the size of the highly stressed volume. This approach leads to a probabilistic Kitagawa-Takahashi type diagram, which in this case explains the relationship between the defect size and the scale effect on thefatigue strength. The predictions show good agreement with the experimental results and illustrate the importance of taking the scale effect into account when designing components containing different surface defects types or roughness patterns.< Réduire
Mots clés
Mechanics of Materials
Mechanical Engineering
Modelling and Simulation
Industrial and Manufacturing Engineering
General Materials Science
Origine
Importé de halUnités de recherche