Afficher la notice abrégée

hal.structure.identifierInstitut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.contributor.authorCORE, Arthur
hal.structure.identifierInstitut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.contributor.authorKOPP, Jean-Benoit
IDREF: 17687335X
hal.structure.identifierInstitut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.contributor.authorGIRARDOT, Jeremie
IDREF: 180810375
hal.structure.identifierInstitut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.contributor.authorVIOT, Philippe
dc.date.accessioned2021-05-14T09:40:21Z
dc.date.available2021-05-14T09:40:21Z
dc.date.issued2018-12
dc.identifier.issn2452-3216
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/76557
dc.description.abstractHollow sphere structure (HSS) belongs to cellular solids that have been studied recently for its multiples properties. In our case, HSS aims to absorb soft impacts energy on an airliner cockpit. This structure is investigated because of its promises in term of specific energy dissipated (J.kg1) during impact. First of all, quasi- static and dynamic (v = 5mmmin_1 to v = 2ms4) uniaxial compression tests are conducted at room temperature on a single sphere (D = 30 mm). Rapid crack propagation (RCP) is observed to be predominant at macroscopic scale. The formalism of Linear Elastic Fracture Mechanics (L.E.F.M.) is therefore used to estimate the dynamic energy release rate GIdc . The crack tip location is measured during the crack propagation using a high speed camera. The Discrete Element Method (DEM) is used to simulate the dynamic fracture by implementing a node release technique to perform a generation phase simulation. The dynamic energy release rate can be determined using the experimentally measured crack history. In hollowed spherical structures the numerical results reveal a high proportion of energy dissipated through inertial effects as well as a dependence of the thickness of the skin over the range of 0.04 mm to 1.2 mm. At a crack tip velocity of 0.6 times the Rayleigh wave speed of the material, the dynamic correction factor is less than 0.05. Similar results have been shown for the longitudinal dynamic fracture of polymer pipes. The quantitative results of GIdc are in good agreement with the literature and the present model offers an alternative to the finite element method to simulate the rapid crack propagation.Its use reveals to be an interesting way to model the mechanical behavior of brittle materials.
dc.language.isoen
dc.publisherESIS - Elsevier
dc.subjectDynamic fracture
dc.subjectDiscrete Element Method
dc.subjectImpact
dc.subjectHollow spheres
dc.titleStudy of the dynamic fracture of hollow spheres under compression using the Discrete Element Method
dc.typeArticle de revue
dc.subject.halPhysique [physics]
bordeaux.journalProcedia Structural Integrity
bordeaux.page1378-1383
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.issue13
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-02333195
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02333195v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.title=Study%20of%20the%20dynamic%20fracture%20of%20hollow%20spheres%20under%20compression%20using%20the%20Discrete%20Element%20Method&rft.atitle=Study%20of%20the%20dynamic%20fracture%20of%20hollow%20spheres%20under%20compression%20using%20the%20Discrete%20Element%20Method&rft.jtitle=Procedia%20Structural%20Integrity&rft.date=2018-12&rft.issue=13&rft.spage=1378-1383&rft.epage=1378-1383&rft.eissn=2452-3216&rft.issn=2452-3216&rft.au=CORE,%20Arthur&KOPP,%20Jean-Benoit&GIRARDOT,%20Jeremie&VIOT,%20Philippe&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée