Afficher la notice abrégée

hal.structure.identifierLaboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
dc.contributor.authorVAUDELLE, Fabrice
dc.date.accessioned2021-05-14T09:40:04Z
dc.date.available2021-05-14T09:40:04Z
dc.date.issued2018-10
dc.identifier.issn0030-4018
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/76546
dc.description.abstractA Monte Carlo code is built taking into account macroscopic spheroid cavities inside a turbid medium, i.e. in mixing Multi-Layer Monte Carlo (MLMC) and Monte Carlo Ray Tracing (MCRT). That simulates a tissue with a strong and heterogeneous porosity, such as flesh tissues of fruit or bone tissues. This kind of tissue, which has two scales of porosity (microscopic and macroscopic), differs notably of the homogeneous and continuous model used in the usual radiative transfer equation. The influence of the presence of spheroids can be observed on the shape of the effective phase function, on the effect related to the time-resolved diffusion solution or also on the scattering coefficient retrieved by means of the Beer–Lambert relationship. For instance, the reduced scattering coefficients retrieved thanks to time-resolved transmittance from MLMC-MCRT models having a lot of intertwined large cavities show variations coherent with those retrieved from bone tissue. Furthermore, the effect of porosity on optical transmission seems to have a real impact when relative refractive index is close to 1. In this case, the equivalence problem between such porous MLMC-MCRT model and a homogeneous turbid medium, can be discussed at the level of the angular intensity distribution over the plane boundaries. This requires to fit this angular distribution by an Adding-Doubling model using optimized optical depth and scattering phase function. Experimental scattering phase functions obtained from apple tissues are considered in order to test this idea, and then compared with those computed with a MLMC-MCRT model.
dc.language.isoen
dc.publisherElsevier
dc.subjectPhysical and Theoretical Chemistry
dc.subjectElectrical and Electronic Engineering
dc.subjectAtomic and Molecular Physics
dc.subjectand Optics
dc.subjectElectronic
dc.subjectOptical and Magnetic Materials
dc.titleLight scattering in thin turbid tissue including macroscopic porosities: A study based on a Monte Carlo model
dc.typeArticle de revue
dc.subject.halSciences de l'ingénieur [physics]
bordeaux.journalOptics Communications
bordeaux.page91-100
bordeaux.volume425
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-02333751
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02333751v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.title=Light%20scattering%20in%20thin%20turbid%20tissue%20including%20macroscopic%20porosities:%20A%20study%20based%20on%20a%20Monte%20Carlo%20model&rft.atitle=Light%20scattering%20in%20thin%20turbid%20tissue%20including%20macroscopic%20porosities:%20A%20study%20based%20on%20a%20Monte%20Carlo%20model&rft.jtitle=Optics%20Communications&rft.date=2018-10&rft.volume=425&rft.spage=91-100&rft.epage=91-100&rft.eissn=0030-4018&rft.issn=0030-4018&rft.au=VAUDELLE,%20Fabrice&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée