Show simple item record

hal.structure.identifierLaboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
dc.contributor.authorGMATI, Hela
hal.structure.identifierLaboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
dc.contributor.authorMAREAU, Charles
hal.structure.identifierLaboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
dc.contributor.authorAMMAR, Amine
hal.structure.identifierLaboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
dc.contributor.authorEL AREM, Saber
dc.date.accessioned2021-05-14T09:33:14Z
dc.date.available2021-05-14T09:33:14Z
dc.date.issued2020-03-31
dc.identifier.issn1097-0207
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/76038
dc.description.abstractA generic methodology to deal with the mechanics of beams and shafts with cracks is presented. The elastic energy of the system under static loading is written in a comprehensive manner to remarkably reduce the 3D computations indispensable to the identification of the crack breathing mechanism. With a new reformulation of the problem, the breathing mechanism identification is distilled down to the computation of a dimensionless function that gives a fine and precise description of the system flexibility evolution when the crack breathes. This breathing function is exclusively inherent to the crack geometry and completely independent of the 3D model parameters which makes the approach more universal and could be applied straightforward to similar problems.This standard and generic methodology is completed by a detailed description of the technique of construction of a Cracked Beam Finite Element. Moreover, we give a nonlinear fitting formula of the identified function that all the process of identification could be skipped when a cracked transverse section is to be inserted in a beam-like model of a cracked shaft. A validation of the approach under static loading is given for a cantilever beam with one, then two cracked transverse sections. We also show, for a simple cracked shaft, common features of its vibrational behavior.
dc.language.isoen
dc.subjectGeneral Engineering
dc.subjectApplied Mathematics
dc.subjectNumerical Analysis
dc.titleA phase‐field model for brittle fracture of anisotropic materials
dc.typeArticle de revue
dc.identifier.doi10.1002/nme.6361
dc.subject.halSciences de l'ingénieur [physics]
bordeaux.journalInternational Journal for Numerical Methods in Engineering
bordeaux.page3362-3381
bordeaux.volume121
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.issue15
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-02944667
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02944667v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.title=A%20phase%E2%80%90field%20model%20for%20brittle%20fracture%20of%20anisotropic%20materials&rft.atitle=A%20phase%E2%80%90field%20model%20for%20brittle%20fracture%20of%20anisotropic%20materials&rft.jtitle=International%20Journal%20for%20Numerical%20Methods%20in%20Engineering&rft.date=2020-03-31&rft.volume=121&rft.issue=15&rft.spage=3362-3381&rft.epage=3362-3381&rft.eissn=1097-0207&rft.issn=1097-0207&rft.au=GMATI,%20Hela&MAREAU,%20Charles&AMMAR,%20Amine&EL%20AREM,%20Saber&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record