Show simple item record

hal.structure.identifierInstitut de Mécanique et d'Ingénierie de Bordeaux [I2M]
hal.structure.identifierTransferts, écoulements, fluides, énergétique [TREFLE]
dc.contributor.authorJOST, Antoine Michael Diego
hal.structure.identifierTransferts, écoulements, fluides, énergétique [TREFLE]
hal.structure.identifierInstitut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.contributor.authorGLOCKNER, Stéphane
dc.date.accessioned2021-05-14T09:31:26Z
dc.date.available2021-05-14T09:31:26Z
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/75888
dc.description.abstractEnIt has been previously shown that the ghost-cell immersed boundary methods (IBMs) with a maximum stencil size larger than 1 do not yield band matrices and as a result cannot use the more efficient geometric multi-grid algorithms and instead must rely on the more generic and less efficient algebraic multi-grid algorithms. To address these shortcomings and in the pursuit of smaller total run times, smaller memory requirements, and increased accuracy the current article proposes the linear square shifting and the quadratic ghost node methods for the ghost-cell IBM for Cartesian grids. The linear square shifting method guarantees a maximum stencil size of 1 for all immersed boundaries and the increases in accuracy and convergence of the proposed method are comprehensively verified with the canonical verification Poisson test problem. A comprehensive analysis of the effect of the quadratic ghost node method together with the shifting approach for various immersed boundary conditions is also performed with the Poisson test problem. The improved computational efficiency of these methods, and their various combinations, is also verified through the canonical validation test cases of laminar pipe flow and laminar flow past a sphere for various Reynolds numbers, wherein speed-ups of approximately three are achieved.
dc.language.isoen
dc.subject.enImmersed boundary method
dc.subject.enDirect forcing
dc.subject.enDiscretization stencil
dc.subject.enPoisson problem
dc.subject.enIncompressible Navier-Stokes
dc.subject.enBoundary conditions
dc.subject.enGhost-cell method
dc.title.enDirect forcing immersed boundary method: Improvements to the Ghost Node Method
dc.typeDocument de travail - Pré-publication
dc.subject.halInformatique [cs]/Ingénierie, finance et science [cs.CE]
dc.subject.halInformatique [cs]/Modélisation et simulation
dc.subject.halPhysique [physics]/Mécanique [physics]/Mécanique des fluides [physics.class-ph]
dc.subject.halPhysique [physics]/Physique [physics]/Dynamique des Fluides [physics.flu-dyn]
dc.subject.halPhysique [physics]/Physique [physics]/Physique Numérique [physics.comp-ph]
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
hal.identifierhal-02341656
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02341656v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=JOST,%20Antoine%20Michael%20Diego&GLOCKNER,%20St%C3%A9phane&rft.genre=preprint


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record