Afficher la notice abrégée

hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorZHANG, Fan
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorERRIGUIBLE, Arnaud
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorNGUYEN, Olivier
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorLECOUTRE, Carole
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorGARRABOS, Yves
hal.structure.identifierCase Western Reserve University [Cleveland]
dc.contributor.authorHEGDE, Uday
hal.structure.identifierNASA John H. Glenn Research Center
dc.contributor.authorHICKS, Michael
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorMARRE, Samuel
dc.date.accessioned2021-05-14T09:31:18Z
dc.date.available2021-05-14T09:31:18Z
dc.date.conference2020-10-20
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/75876
dc.description.abstractEnIn the frame of the SCWO insert development aiming at studying cold combustion process in supercritical water (T < 600°C, p < 300 bar) for the recycling and valorization of wastes for long term exploration missions, we focus in here on mixing phenomena occurring within microreactors working in realistic pressure conditions (100 bar). We have considered model fluid mixtures (CO2-water diphasic and CO2-ethanol monophasic), which are representative of the future thermo-hydrodynamic properties, which will be used in SCWO with supercritical water. We have first identified new jetting mode for coflow injection, mostly driven by inertia. Then, we have determined by numerical simulation the mixing time associated with coflowing fluids inside microchannels for a monophasic system (CO2 – ethanol) at both laminar and turbulent conditions.
dc.language.isofr
dc.title.enCoupling experimental and numerical modeling for studying mixing thermo-hydrodynamic phenomena in a microfluidic reactor working under pressure
dc.typeCommunication dans un congrès avec actes
dc.subject.halChimie/Matériaux
bordeaux.page2 pages
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.countryFR
bordeaux.title.proceedingColloque Annuel du GDR MFA 2799 – Marseille, France
bordeaux.conference.cityMarseille
bordeaux.peerReviewedoui
hal.identifierhal-03135084
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03135084v1
bordeaux.COinSctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.spage=2%20pages&amp;rft.epage=2%20pages&amp;rft.au=ZHANG,%20Fan&amp;ERRIGUIBLE,%20Arnaud&amp;NGUYEN,%20Olivier&amp;LECOUTRE,%20Carole&amp;GARRABOS,%20Yves&amp;rft.genre=proceeding


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée