Afficher la notice abrégée

dc.contributor.authorVALDÉS-PARADA, F.
hal.structure.identifierInstitut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.contributor.authorLASSEUX, Didier
IDREF: 131294474
dc.date.accessioned2021-05-14T09:30:57Z
dc.date.available2021-05-14T09:30:57Z
dc.date.issued2021-02-01
dc.identifier.issn1070-6631
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/75853
dc.description.abstractEnA new one-domain approach is developed in this work yielding an operational average description of one-phase flow in the classical Beavers and Joseph configuration including a porous medium topped by a fluid channel. The model is derived by considering three distinct regions: the homogeneous part of the porous domain, the inter-region, and the free fluid region. The development is carried out including inertial flow and slip effects at the solid-fluid interfaces. Applying an averaging procedure to the pore-scale equations, a unified macroscopic momentum equation, applicable everywhere in the system and having a Darcy form, is derived. The position-dependent apparent permeability tensor in this model is predicted from the solution of two coupled closure problems in the inter-region and in the homogeneous part of the porous medium. The performance of the model is assessed through in silico validations in different flow situations showing excellent agreement between the average flow fields obtained from direct numerical simulations of the pore-scale equations in the entire system and the prediction of the one-domain approach. Furthermore, validation with experimental data is also presented for creeping flow under no-slip conditions. In addition to the fact that the model is general from the point of view of the flow situations it encompasses, it is also simple and novel, hence providing a practical and interesting alternative to models proposed so far using one-or two-domain approaches.
dc.language.isoen
dc.publisherAmerican Institute of Physics
dc.title.enA novel one-domain approach for modeling flow in a fluid-porous system including inertia and slip effects
dc.typeArticle de revue
dc.identifier.doi10.1063/5.0036812
dc.subject.halSciences de l'ingénieur [physics]
dc.subject.halSciences de l'ingénieur [physics]/Milieux fluides et réactifs
dc.subject.halSciences de l'ingénieur [physics]/Génie des procédés
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]
dc.subject.halSciences de l'environnement
dc.subject.halPlanète et Univers [physics]
dc.subject.halChimie/Génie chimique
bordeaux.journalPhysics of Fluids
bordeaux.page022106
bordeaux.volume33
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.issue2
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-03150992
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03150992v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Physics%20of%20Fluids&rft.date=2021-02-01&rft.volume=33&rft.issue=2&rft.spage=022106&rft.epage=022106&rft.eissn=1070-6631&rft.issn=1070-6631&rft.au=VALD%C3%89S-PARADA,%20F.&LASSEUX,%20Didier&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée