Show simple item record

hal.structure.identifierInstitut de Mécanique et d'Ingénierie de Bordeaux [I2M]
hal.structure.identifierService National d'Observation sur le KARST [SNO Karst]
dc.contributor.authorPEYRAUBE, Nicolas
IDREF: 157074005
hal.structure.identifierInstitut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.contributor.authorLASTENNET, Roland
IDREF: 079112056
hal.structure.identifierDepartement d'Information Medicale des Hospices Civils de Lyon
dc.contributor.authorDENIS, Alain
IDREF: 095129243
dc.date.accessioned2021-05-14T09:30:44Z
dc.date.available2021-05-14T09:30:44Z
dc.date.issued2012-04
dc.identifier.issn0022-1694
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/75835
dc.description.abstractEnIn karstic environments, groundwater is strongly influenced by CO2 partial pressure variations of air present in the infiltration zone of these aquifers. In order to characterize the geochemical changes in groundwater as it moves through the infiltration zone, we monitored various rising springs in the perched karstic aquifer of Cussac (Dordogne, France), and measured the CO2 partial pressure in air of a nearby cavity (the Cussac Cave) for 24 months. Our method is based on the relationship between the saturation index with respect to calcite (SIc) and the CO2 partial pressure at atmospheric equilibrium with water. We distinguished a value for this last parameter when water is at equilibrium with respect to calcite (SIc = 0) called saturation CO2 partial pressure. The use of this parameter can provide information on flow conditions and relationships between water, air, and rock. Cussac aquifer is a suitable area to apply these methods because of its small size, numerous springs, and a cave that provides data for CO2 partial pressure condition inside the massif. Results show that most of the calcium-carbonate mineralization is acquired in the epikarst followed by a precipitation phase in the upper part of the infiltration zone. Groundwater reaches the saturated zone with some degree of saturation depending on CO2 partial pressure variations in air inside the massif.
dc.language.isoen
dc.publisherElsevier
dc.title.enGeochemical evolution of groundwater in the unsaturated zone of a karstic massif, using the PCO2- Sic relationship
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jhydrol.2012.01.033
dc.subject.halPlanète et Univers [physics]/Interfaces continentales, environnement
dc.subject.halPlanète et Univers [physics]/Sciences de la Terre/Géochimie
dc.subject.halPlanète et Univers [physics]/Sciences de la Terre/Hydrologie
bordeaux.journalJournal of Hydrology
bordeaux.page13-24
bordeaux.volume430-431
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-03164023
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03164023v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Hydrology&rft.date=2012-04&rft.volume=430-431&rft.spage=13-24&rft.epage=13-24&rft.eissn=0022-1694&rft.issn=0022-1694&rft.au=PEYRAUBE,%20Nicolas&LASTENNET,%20Roland&DENIS,%20Alain&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record