Polynominalité des coefficients de structures des algèbres de doubles-classes
Langue
fr
Thèses de doctorat
Date de soutenance
2014-11-24Spécialité
Informatique
École doctorale
École doctorale de mathématiques et informatique (Talence, Gironde)Résumé
On étudie dans cette thèse les coefficients de structure et particulièrement leurs dépendancesen n dans le cadre d’une suite des algèbres de doubles-classes. Le premier chapitre est dédié à l’étude des coefficients de ...Lire la suite >
On étudie dans cette thèse les coefficients de structure et particulièrement leurs dépendancesen n dans le cadre d’une suite des algèbres de doubles-classes. Le premier chapitre est dédié à l’étude des coefficients de structure dans le cas général des centres d’algèbres de groupes finis et des algèbres de doubles-classes. On rappelle dans ce chapitre la théorie des représentationsdes groupes finiset son lien avec les coefficients de structure. On montre que l’étude des coefficients de structure des algèbres de doubles-classes est reliéeà la théorie des paires de Gelfand et auxfonctions sphériques zonales en donnant un théorème similaireà celui de Frobenius. Ce théorème exprime les coefficients de structure d’une algèbre de doubles-classes associée à une paire de Gelfand en fonction des fonctions sphériques zonales. Dans le deuxième chapitre, on rappellele théorème de Farahat et Higmann autour de la propriété de polynomialité des coefficients de structure du centre de l’algèbre du groupe symétriqueainsi que la preuve d’Ivanov et Kerov. On donne une preuvecombinatoire pour lapropriété de polynomialité des coefficients de structure de l’algèbre de Hecke de la paire (S2n, Bn) dans le troisième chapitre. On utilise dans notre preuve une algèbre universelle qui se projette sur l’algèbre de Hecke de la paire (S2n, Bn) pour tout n. On montre aussi que cette algèbre universelle est isomorphe à l’algèbre fonctions symétriques décalées d’ordre 2. Dans le dernier chapitre on présente un cadre général pour la forme des coefficients de structure dans le cas d’une suite des algèbres de doubles-classes.Ce cadre regroupe les propriétés de polynomialité des coefficients de structure du centre de l’algèbre du groupe symétrique et de l’algèbre de Hecke de la paire (S2n, Bn).De plus, on donne des propriétés de polynomialité pour les coefficients de structure du centre de l’algèbre du groupe hypéroctaédral et de l’algèbre de doubles-classes de diag (Sn-1) dans Sn x Sopp n-1.< Réduire
Résumé en anglais
In this thesis we studied the structure coefficients and especially their dependence on n in the case of a sequence of double-class algebras. The first chapter is dedicated to the study of the structure coefficients in the ...Lire la suite >
In this thesis we studied the structure coefficients and especially their dependence on n in the case of a sequence of double-class algebras. The first chapter is dedicated to the study of the structure coefficients in the general cases of centers of group algebras and double-class algebras. We recall in it the representation theory of finite groups and its link with structure coefficients. We show also that the study of the structure coefficients of double-class algebras is related to the theory of Gelfand pairs and zonal spherical functions by giving, in the case of Gelfand pairs, a theorem similar to that of Frobenius which writes the structure coefficients of the double-class algebra associated to a Gelfand pair in terms of zonal spherical functions. In the second chapter, we recall the Farahat and Higman's theorem about the polynomiality of the structure coefficients of the center of the symmetric group algebra as well as the Ivanov and Kerov's approach to prove this theorem. We give a combinatorial proof to the polynomiality property of the structure coefficients of the Hecke algebra of thepair (S2n, Bn) in the third chapter. Our proof uses a universal algebra which projects on the Hecke algebra of (S2n, Bn) for each n. We show that this universal algebra is isomorphic to the algebra of 2-shifted symmetric functions. In the fourth and last chapter we build a general framework which gives us the form of the structure coefficients in the case of a sequence of double-class algebras. This framework implies the polynomiality property of the structure coefficients of both the center of the symmetric group algebra and the Hecke algebra of (S2n, Bn). In addition, we give a polynomiality property for the structure coefficients of both the center of the hyperoctahedral group algebra and the double-class algebra of diag (Sn-1) in Sn x Sopp n-1.< Réduire
Mots clés
Coefficients de structure
Centres des algèbres de groupe
Algèbres de doubles-classes
Mots clés en anglais
Structure coefficients
Centers of group algebras,
Double-class algebras
Origine
Importé de STAR