Mostrar el registro sencillo del ítem

dc.rights.licenseopenen_US
dc.relation.isnodouble7871e904-17d0-4c7b-a4df-074502f54e78*
hal.structure.identifierInstitut Européen de Chimie et Biologie [IECB]
dc.contributor.authorDE, Soumen
hal.structure.identifierInstitut Européen de Chimie et Biologie [IECB]
dc.contributor.authorCHI, Bo
hal.structure.identifierInstitut Européen de Chimie et Biologie [IECB]
dc.contributor.authorGRANIER, Thierry
hal.structure.identifierInstitut Européen de Chimie et Biologie [IECB]
dc.contributor.authorQI, Ting
hal.structure.identifierInstitut Européen de Chimie et Biologie [IECB]
dc.contributor.authorMAURIZOT, Victor
hal.structure.identifierInstitut Européen de Chimie et Biologie [IECB]
dc.contributor.authorHUC, Ivan
dc.date.accessioned2020-04-15T09:34:04Z
dc.date.available2020-04-15T09:34:04Z
dc.date.issued2018
dc.identifier.issn1755-4330en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/4259
dc.description.abstractEnAbiotic foldamers, that is foldamers that have backbones chemically remote from peptidic and nucleotidic skeletons, may give access to shapes and functions different to those of peptides and nucleotides. However, design methodologies towards abiotic tertiary and quaternary structures are yet to be developed. Here we report rationally designed interactional patterns to guide the folding and assembly of abiotic helix bundles. Computational design facilitated the introduction of hydrogen-bonding functionalities at defined locations on the aromatic amide backbones that promote cooperative folding into helix-turn-helix motifs in organic solvents. The hydrogen-bond-directed aggregation of helices not linked by a turn unit produced several thermodynamically and kinetically stable homochiral dimeric and trimeric bundles with structures that are distinct from the designed helix-turn-helix. Relative helix orientation within the bundles may be changed from parallel to tilted on subtle solvent variations. Altogether, these results prefigure the richness and uniqueness of abiotic tertiary structure behaviour.
dc.language.isoENen_US
dc.subject.enProtein folding
dc.subject.enSelf-assembly
dc.title.enDesigning cooperatively folded abiotic uni- and multimolecular helix bundles
dc.title.alternativeNature Chemen_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1038/nchem.2854
dc.subject.halChimie/Matériauxen_US
bordeaux.journalNature Chemistryen_US
bordeaux.page51-57en_US
bordeaux.volume10en_US
bordeaux.hal.laboratoriesInstitut de Chimie & de Biologie des Membranes & des Nano-objets (CBMN) - UMR 5248
bordeaux.issue1en_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.identifierhal-03158270
hal.version1
hal.date.transferred2021-03-03T15:56:15Z
hal.exporttrue
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Nature%20Chemistry&rft.date=2018&rft.volume=10&rft.issue=1&rft.spage=51-57&rft.epage=51-57&rft.eissn=1755-4330&rft.issn=1755-4330&rft.au=DE,%20Soumen&CHI,%20Bo&GRANIER,%20Thierry&QI,%20Ting&MAURIZOT,%20Victor&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem