Localisation à partir de caméra vidéo portée
Language
fr
Thèses de doctorat
Date
2011-12-05Speciality
Automatique, productique, signal et image
Doctoral school
École doctorale des sciences physiques et de l’ingénieur (Talence, Gironde)Abstract
L’indexation par le contenu de lifelogs issus de capteurs portées a émergé comme un enjeu à forte valeur ajoutée permettant l’exploitation de ces nouveaux types de donnés. Rendu plus accessible par la récente disponibilité ...Read more >
L’indexation par le contenu de lifelogs issus de capteurs portées a émergé comme un enjeu à forte valeur ajoutée permettant l’exploitation de ces nouveaux types de donnés. Rendu plus accessible par la récente disponibilité de dispositifs miniaturisés d’enregistrement, les besoins pour l’extraction automatique d’informations pertinents générées par autres applications, la localisation en environnement intérieur est un problème difficile à l’analyse de telles données.Beaucoup des solutions existantes pour la localisation fonctionnent insuffisamment bien ou nécessitent une intervention important à l’intérieur de bâtiment. Dans cette thèse, nous abordons le problème de la localisation topologique à partir de séquences vidéo issues d’une camera portée en utilisant une approche purement visuelle. Ce travail complète d’extraction des descripteurs visuels de bas niveaux jusqu’à l’estimation finale de la localisation à l’aide d’algorithmes automatiques.Dans ce cadre, les contributions principales de ce travail ont été faites pour l’exploitation efficace des informations apportées par descripteurs visuels multiples, par les images non étiquetées et par la continuité temporelle de la vidéo. Ainsi, la fusion précoce et la fusion tardive des données visuelles ont été examinées et l’avantage apporté par la complémentarité des descripteurs visuels a été mis en évidence sur le problème de la localisation. En raison de difficulté à obtenir des données étiquetées en quantités suffisantes, l’ensemble des données a été exploité ; d’une part les approches de réduction de dimensionnalité non-linéaire ont été appliquées, afin d’améliorer la taille des données à traiter et la complexité associée ; d’autre part des approches semi-supervisés ont été étudiées pour utiliser l’information supplémentaire apportée par les images non étiquetées lors de la classification. Ces éléments ont été analysé séparément et on été mis en œuvre ensemble sous la forme d’une nouvelle méthode par co-apprentissage temporelle. Finalement nous avons également exploré la question de l’invariance des descripteurs, en proposant l’utilisation d’un apprentissage invariant à la transformation spatiale, comme un autre réponse possible un manque de données annotées et à la variabilité visuelle.Ces méthodes ont été évaluées sur des séquences vidéo en environnement contrôlé accessibles publiquement pour évaluer le gain spécifique de chaque contribution. Ce travail a également été appliqué dans le cadre du projet IMMED, qui concerne l’observation et l’indexation d’activités de la vie quotidienne dans un objectif d’aide au diagnostic médical, à l’aide d’une caméra vidéo portée. Nous avons ainsi pu mettre en œuvre le dispositif d’acquisition vidéo portée, et montrer le potentiel de notre approche pour l’estimation de la localisation topologique sur un corpus présentant des conditions difficiles représentatives des données réelles.Read less <
English Abstract
Visual lifelog indexing by content has emerged as a high reward application. Enabled by the recent availability of miniaturized recording devices, the demand for automatic extraction of relevant information from wearable ...Read more >
Visual lifelog indexing by content has emerged as a high reward application. Enabled by the recent availability of miniaturized recording devices, the demand for automatic extraction of relevant information from wearable sensors generated content has grown. Among many other applications, indoor localization is one challenging problem to be addressed.Many standard solutions perform unreliably in indoors conditions or require significant intervention. In this thesis we address from the perspective of wearable video camera sensors using an image-based approach. The key contribution of this work is the development and the study of a location estimation system composed of diverse modules, which perform tasks ranging from low-level visual information extraction to final topological location estimation with the aid of automatic indexing algorithms. Within this framework, important contributions have been made by efficiently leveraging information brought by multiple visual features, unlabeled image data and the temporal continuity of the video.Early and late data fusion were considered, and shown to take advantage of the complementarities of multiple visual features describing the images. Due to the difficulty in obtaining annotated data in our context, semi-supervised approaches were investigated, to use unlabeled data as additional source of information, both for non-linear data-adaptive dimensionality reduction, and for improving classification. Herein we have developed a time-aware co-training approach that combines late data-fusion with the semi-supervised exploitation of both unlabeled data and time information. Finally, we have proposed to apply transformation invariant learning to adapt non-invariant descriptors to our localization framework.The methods have been tested on controlled publically available datasets to evaluate the gain of each contribution. This work has also been applied to the IMMED project, dealing with activity recognition and monitoring of the daily living using a wearable camera. In this context, the developed framework has been used to estimate localization on the real world IMMED project video corpus, which showed the potential of the approaches in such challenging conditions.Read less <
Keywords
Lifelogging
Indexation de vidéo
Estimation de localisation à l'intérieur
Suivi des activités
Apprentissage semi-supervisé
Apprentissage invariante
English Keywords
Lifelogging
Video indexing
Indoors location estimation
Activity monitoring
Semi-supervised learning
Invariant learning
Origin
STAR importedCollections