Etude par microscopie électronique des mécanismes d'action de vecteurs synthétiques pour le transfert de gènes
Idioma
fr
Thèses de doctorat
Fecha de defensa
2009-12-16Especialidad
Biochimie
Escuela doctoral
École doctorale Sciences de la vie et de la santé (Bordeaux)Resumen
La grande majorité des essais cliniques de transfert de gènes in vivo utilise des vecteurs viraux. Si ces derniers sont efficaces, ils présentent des risques immunogènes, toxiques, voire mutagènes avérés. Les vecteurs ...Leer más >
La grande majorité des essais cliniques de transfert de gènes in vivo utilise des vecteurs viraux. Si ces derniers sont efficaces, ils présentent des risques immunogènes, toxiques, voire mutagènes avérés. Les vecteurs synthétiques (non viraux), par leur grande modularité et leur faible toxicité représentent une alternative très prometteuse. Le principal frein à leur utilisation est leur manque d’efficacité. L’objectif majeur de ce travail de thèse a été de comprendre le mécanisme de transfert de gènes associé à différents complexes vecteurs synthétiques/ADN plasmidique, ce qui est indispensable pour une conception rationnelle de nouveaux vecteurs. Nous avons étudié, sur cellules en culture, le mécanisme de transfert de gènes associé à deux lipides cationiques ; le BGTC (bis(guanidinium)-tren-cholesterol) et la DOSP (DiOleylamine A-Succinyl-Paromomycine) qui sont connus pour être des vecteurs efficaces in vitro. Nous avons ainsi pu visualiser par microscopie électronique leurs voies d’entrée, leurs remaniements structuraux ainsi que leur échappement endosomal qui représente une étape clé du processus de transfert de gènes. L’identification non ambigüe des lipoplexes tout au long de leur trafic intracellulaire a été rendue possible grâce au marquage de l’ADN par des nanoparticules de silice dotées d’un cœur de maghémite (Fe2O3) dense aux électrons. Cette stratégie de marquage a également été appliquée à l’étude du mécanisme d’action d’un autre vecteur synthétique de type polymère, le copolymère à blocs non ionique P188 ou Lutrol. Contrairement à la plupart des vecteurs synthétiques, celui-ci présente une efficacité de transfection in vivo chez la souris par injection in situ pour le tissu musculaire ou en intra trachéale dans le poumon. En revanche, il est totalement inefficace in vitro. Nous avons montré que le Lutrol permet une augmentation de l’internalisation d’ADN par les cellules mais n’induit pas son échappement endosomal, ce qui expliquerait son absence d’efficacité in vitro. D’autres voies d’entrée sont alors à envisager in vivo pour comprendre son mécanisme d’action.< Leer menos
Resumen en inglés
The vast majority of clinical trials of gene transfer in vivo use viral vectors. Although they are effective, they induce immunogenic, toxic or mutagenic risks. Due to their high modularity and low toxicity, synthetic ...Leer más >
The vast majority of clinical trials of gene transfer in vivo use viral vectors. Although they are effective, they induce immunogenic, toxic or mutagenic risks. Due to their high modularity and low toxicity, synthetic vectors (non viral), represent a promising alternative despite their lack of effectiveness. The major objective of this work was to understand the mechanism of gene transfer using two prototypic synthetic vectors, in the context of a rational design of new vectors. We studied on cultured cells, the mechanism of action of two cationic lipids; BGTC (bis(guanidinium)-tren-cholesterol) and DOSP (DiOleylamine A-Succinyl-Paromomycine) formulated with plasmid DNA (lipoplexes) which are in vitro efficient vectors. We have been able to visualize by electron microscopy, their intracellular pathways, their structural alterations and their endosomal escape, the latter being a key step in the process of gene transfer. The unambiguous identification of lipoplexes throughout their intracellular trafficking has been made possible thanks to the labelling of DNA by core-shell silica nanoparticles with an electron dense maghemite core (Fe2O3). The labeling strategy has also been applied to study the mechanism of action of a nonionic block copolymer (P188 or Lutrol). Interestingly, these synthetic vectors have an in vivo transfection efficiency in mice lung and muscle tissue while they are totally inefficient in vitro. We have shown that Lutrol induces an increase of DNA internalization into cells and fails to trigger endosomal escape, which would explain the lack of in vitro efficacy. These findings suggest that the in vivo mechanism of action of Lutrol would involve other internalization pathways.< Leer menos
Palabras clave
Microscopie électronique
Cryo-microscopie électronique
Nanoparticules
Vecteurs synthétiques
Transfert de gènes
Lipides cationiques
Tomographie
Copolymères à blocs
Palabras clave en inglés
Electron microscopy
Cryo-electron microscopy
Nanoparticles
Synthetic vectors
Gene transfer
Cationic lipids
Tomography
Block copolymers
Orígen
Recolectado de STARCentros de investigación