Thermoresponsive micelles from jeffamine-b-poly(L-glutamic acid) double hydrophilic block copolymers
TATON, Daniel
Laboratoire de Chimie des polymères organiques [LCPO]
Team 1 LCPO : Polymerization Catalyses & Engineering
See more >
Laboratoire de Chimie des polymères organiques [LCPO]
Team 1 LCPO : Polymerization Catalyses & Engineering
TATON, Daniel
Laboratoire de Chimie des polymères organiques [LCPO]
Team 1 LCPO : Polymerization Catalyses & Engineering
Laboratoire de Chimie des polymères organiques [LCPO]
Team 1 LCPO : Polymerization Catalyses & Engineering
LECOMMANDOUX, Sebastien
Laboratoire de Chimie des polymères organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
< Reduce
Laboratoire de Chimie des polymères organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
Language
en
Article de revue
This item was published in
Langmuir. 2007, vol. 23, n° 23, p. 11526-11533
American Chemical Society
English Abstract
Double hydrophilic block copolymers (DHBC) consisting of a Jeffamine block, a statistical copolymer based on ethylene oxide and propylene oxide units possessing a lower critical solution temperature (LCST) of 30 degrees C ...Read more >
Double hydrophilic block copolymers (DHBC) consisting of a Jeffamine block, a statistical copolymer based on ethylene oxide and propylene oxide units possessing a lower critical solution temperature (LCST) of 30 degrees C in water, and Poly(L-glutamic acid) as a pH-responsive block were synthesized by ring-opening polymerization of gamma-benzyl-L-glutamate N-carboxyanhydride using an amino-terminated Jeffamine macroinitiator, followed by hydrolysis. This DHBC proved thermoresponsive as evidenced by dynamic light scattering and small-angle neutron scattering experiments. Spherical micelles with a Jeffamine core and a poly(L-glutamic acid) corona were formed above the LCST of Jeffamine. The size. of the core of such micelles decreased with increasing temperature, with complete core dehydration being achieved at 66 degrees C. Such behavior, commonly observed for thermosensitive homopolymers forming mesoglobules, is thus demonstrated here for a DHBC that self-assembles to generate thermoresponsive micelles of high colloidal stability.Read less <
English Keywords
DELIVERY
POLYMERIZATION
AQUEOUS-MEDIA
SCATTERING
SMALL-ANGLE NEUTRON
N-CARBOXYANHYDRIDES
DIBLOCK COPOLYMERS
WATER
DRUG
Origin
Hal imported