X-ray simulations with gVXR in education, digital twining, experiment planning, and data analysis
ALBIOL, Alberto
Universitat Politècnica de València = Universitad Politecnica de Valencia = Polytechnic University of Valencia [UPV]
Universitat Politècnica de València = Universitad Politecnica de Valencia = Polytechnic University of Valencia [UPV]
ALBIOL, Francisco
Universitat Politècnica de València = Universitad Politecnica de Valencia = Polytechnic University of Valencia [UPV]
Universitat Politècnica de València = Universitad Politecnica de Valencia = Polytechnic University of Valencia [UPV]
BÉCHET, Éric
Université de Liège = University of Liège = Universiteit van Luik = Universität Lüttich [ULiège]
Université de Liège = University of Liège = Universiteit van Luik = Universität Lüttich [ULiège]
LEBLANC, Christophe
Université de Liège = University of Liège = Universiteit van Luik = Universität Lüttich [ULiège]
Université de Liège = University of Liège = Universiteit van Luik = Universität Lüttich [ULiège]
LÉTANG, Jean Michel
Imagerie Tomographique et Radiothérapie
Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé [CREATIS]
Centre Léon Bérard [Lyon]
< Réduire
Imagerie Tomographique et Radiothérapie
Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé [CREATIS]
Centre Léon Bérard [Lyon]
Langue
EN
Article de revue
Ce document a été publié dans
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2025-11, vol. 568, p. 165804
Résumé en anglais
gVirtualXray (gVXR) is an open-source framework that relies on the Beer-Lambert law to simulate X-ray images in real time on a graphics processor unit (GPU) using triangular meshes. A wide range of programming languages ...Lire la suite >
gVirtualXray (gVXR) is an open-source framework that relies on the Beer-Lambert law to simulate X-ray images in real time on a graphics processor unit (GPU) using triangular meshes. A wide range of programming languages is supported (C/C++, Python, R, Ruby, Tcl, C#, Java, and GNU Octave). Simulations generated with gVXR have been benchmarked with clinically realistic phantoms (i.e. complex structures and materials) using Monte Carlo (MC) simulations, real radiographs and real digitally reconstructed radiographs (DRRs), and X-ray computed tomography (CT). It has been used in a wide range of applications, including real-time medical simulators, proposing a new densitometric radiographic modality in clinical imaging, studying noise removal techniques in fluoroscopy, teaching particle physics and X-ray imaging to undergraduate students in engineering, and XCT to masters students, predicting image quality and artifacts in material science, etc. gVXR has also been used to produce a high number of realistic simulated images in optimisation problems and to train machine learning algorithms. This paper presents a comprehensive review of such applications of gVXR.< Réduire
Mots clés en anglais
Machine learning
Registration
Digital twinning
GPU programming
Simulation
Computed tomography
X-ray imaging
X-ray imaging Computed tomography Simulation GPU programming Digital twinning Registration Machine learning
Projet Européen
Fly Algorithm in PET Reconstruction for Radiotherapy Treatment Planning
Unités de recherche