Nanosized amorphous calcium carbonate stabilized by poly(ethylene oxide)-b-poly(acrylic acid) block copolymers
GNANOU, Yves
Laboratoire de Chimie des polymères organiques [LCPO]
Team 1 LCPO : Polymerization Catalyses & Engineering
< Leer menos
Laboratoire de Chimie des polymères organiques [LCPO]
Team 1 LCPO : Polymerization Catalyses & Engineering
Idioma
en
Article de revue
Este ítem está publicado en
Langmuir. 2006, vol. 22, n° 4, p. 1875-1879
American Chemical Society
Resumen en inglés
Particles of amorphous calcium carbonate (ACC), formed in situ from calcium chloride by the slow release of carbon dioxide by alkaline hydrolysis of dimethyl carbonate in water, are stabilized against coalescence in the ...Leer más >
Particles of amorphous calcium carbonate (ACC), formed in situ from calcium chloride by the slow release of carbon dioxide by alkaline hydrolysis of dimethyl carbonate in water, are stabilized against coalescence in the presence of very small amounts of double hydrophilic block copolymers (DHBCs) composed of poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA) blocks. Under optimized conditions, spherical particles of ACC with diameters less than 100 nm and narrow size distribution are obtained at a concentration of only 3 ppm of PEO-b-PAA as additive. Equivalent triblock or star DHBCs are compared to diblock copolymers. The results are interpreted assuming all interaction of the PAA blocks with the surface of the liquid droplets of the concentrated CaCO3 phase, formed by phase separation from the initially homogeneous reaction mixture. The adsorption layer of the block copolymer protects the liquid precursor of ACC from coalescence and/or coagulation.< Leer menos
Palabras clave en inglés
PROTEINS
CRYSTALS
CACO3
NUCLEATION
GROWTH
SHELL
BIOMINERALIZATION
CRYSTALLIZATION
POLYMERS
MATRIX
Orígen
Importado de HalCentros de investigación