Metadatos
Mostrar el registro completo del ítemCompartir este ítem
Therapeutic Efficacy of the Inositol D-Pinitol as a Multi-Faceted Disease Modifier in the 5×FAD Humanized Mouse Model of Alzheimer’s Amyloidosis
LÓPEZ-GAMBERO, Antonio J.
Neurocentre Magendie : Physiopathologie de la Plasticité Neuronale [U1215 Inserm - UB]
Leer más >
Neurocentre Magendie : Physiopathologie de la Plasticité Neuronale [U1215 Inserm - UB]
LÓPEZ-GAMBERO, Antonio J.
Neurocentre Magendie : Physiopathologie de la Plasticité Neuronale [U1215 Inserm - UB]
< Leer menos
Neurocentre Magendie : Physiopathologie de la Plasticité Neuronale [U1215 Inserm - UB]
Idioma
EN
Article de revue
Este ítem está publicado en
Nutrients. 2024-12-04, vol. 16, n° 23
Resumen en inglés
Background/Objectives: Alzheimer’s disease (AD), a leading cause of dementia, lacks effective long-term treatments. Current therapies offer temporary relief or fail to halt its progression and are often inaccessible due ...Leer más >
Background/Objectives: Alzheimer’s disease (AD), a leading cause of dementia, lacks effective long-term treatments. Current therapies offer temporary relief or fail to halt its progression and are often inaccessible due to cost. AD involves multiple pathological processes, including amyloid beta (Aβ) deposition, insulin resistance, tau protein hyperphosphorylation, and systemic inflammation accelerated by gut microbiota dysbiosis originating from a leaky gut. Given this context, exploring alternative therapeutic interventions capable of addressing the multifaceted components of AD etiology is essential. Methods: This study suggests D-Pinitol (DPIN) as a potential treatment modifier for AD. DPIN, derived from carob pods, demonstrates insulin-sensitizing, tau hyperphosphorylation inhibition, and antioxidant properties. To test this hypothesis, we studied whether chronic oral administration of DPIN (200 mg/kg/day) could reverse the AD-like disease progression in the 5×FAD mice. Results: Results showed that treatment of 5×FAD mice with DPIN improved cognition, reduced hippocampal Aβ and hyperphosphorylated tau levels, increased insulin-degrading enzyme (IDE) expression, enhanced pro-cognitive hormone circulation (such as ghrelin and leptin), and normalized the PI3K/Akt insulin pathway. This enhancement may be mediated through the modulation of cyclin-dependent kinase 5 (CDK5). DPIN also protected the gut barrier and microbiota, reducing the pro-inflammatory impact of the leaky gut observed in 5×FAD mice. DPIN reduced bacterial lipopolysaccharide (LPS) and LPS-associated inflammation, as well as restored intestinal proteins such as Claudin-3. This effect was associated with a modulation of gut microbiota towards a more balanced bacterial composition. Conclusions: These findings underscore DPIN’s promise in mitigating cognitive decline in the early AD stages, positioning it as a potential disease modifier. © 2024 by the authors.< Leer menos
Palabras clave en inglés
Alzheimer’s disease
Aβ plaques
CDK5
Brain insulin resistance
Hippocampus
Microbiota dysbiosis
Tau phosphorylation
Centros de investigación