Exploiting Metabolic Vulnerability in Glioblastoma Using a Brain-Penetrant Drug with a Safe Profile
GUYON, Joris
Bordeaux population health [BPH]
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
Bordeaux population health [BPH]
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
LARROQUETTE, Mathieu
Institut de biochimie et génétique cellulaires [IBGC]
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
Institut de biochimie et génétique cellulaires [IBGC]
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
KLINK, Barbara
Luxembourg Institute of Health [LIH]
German Cancer Consortium [Heidelberg] [DKTK]
National Center for Tumor Diseases [Dresden] [NCT]
Luxembourg Institute of Health [LIH]
German Cancer Consortium [Heidelberg] [DKTK]
National Center for Tumor Diseases [Dresden] [NCT]
NIKOLSKI, Macha
Institut de biochimie et génétique cellulaires [IBGC]
Centre de Bioinformatique de Bordeaux [CBIB]
< Réduire
Institut de biochimie et génétique cellulaires [IBGC]
Centre de Bioinformatique de Bordeaux [CBIB]
Langue
EN
Document de travail - Pré-publication
Résumé en anglais
Glioblastoma (GB) remains one of the most treatment refractory and fatal tumour in humans. GB contains a population of self-renewing stem cells, the brain tumour stem cells (BTSC) that are highly resistant to therapy and ...Lire la suite >
Glioblastoma (GB) remains one of the most treatment refractory and fatal tumour in humans. GB contains a population of self-renewing stem cells, the brain tumour stem cells (BTSC) that are highly resistant to therapy and are at the origin of tumour relapse. Here, we report, for the first time, that mubritinib potently impairs stemness and growth of patient-derived BTSCs harboring different oncogenic mutations. Mechanistically, by employing bioenergetic assays and rescue experiments, we provide compelling evidence that mubritinib acts on complex I of the electron transport chain to impair BTSC stemness pathways, self-renewal and proliferation. Global gene expression profiling revealed that mubritinib alters the proliferative, neural-progenitor-like, and the cell-cycling state signatures. We employed in vivo pharmacokinetic assays to establish that mubritinib crosses the blood-brain barrier. Using preclinical models of patient-derived and syngeneic murine orthotopic xenografts, we demonstrated that mubritinib delays GB tumourigenesis, and expands lifespan of animals. Interestingly, its combination with radiotherapy offers survival advantage to animals. Strikingly, thorough toxicological and behavioral studies in mice revealed that mubritinib does not induce any damage to normal cells and has a well-tolerated and safe profile. Our work warrants further exploration of this drug in in-human clinical trials for better management of GB tumours.< Réduire
Unités de recherche