Show simple item record

dc.rights.licenseopen
hal.structure.identifierDept Chem and Center for Macromol Sci and Eng, Univ Florida
dc.contributor.authorLOGAN, Jennifer
hal.structure.identifierLaboratoire de Chimie des polymères organiques [LCPO]
dc.contributor.authorMASSÉ, Pascal
hal.structure.identifierLaboratoire de Chimie des polymères organiques [LCPO]
dc.contributor.authorGNANOU, Yves
hal.structure.identifierLaboratoire de Chimie des polymères organiques [LCPO]
hal.structure.identifierTeam 1 LCPO : Polymerization Catalyses & Engineering
dc.contributor.authorTATON, Daniel
hal.structure.identifierDept Chem and Center for Macromol Sci and Eng, Univ Florida
dc.contributor.authorDURAN, Randolph S.
dc.date.accessioned2020
dc.date.available2020
dc.date.issued2005
dc.identifier.issn0743-7463
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/20678
dc.description.abstractEnStar diblock copolymers containing polystyrene (PS) and poly(ethylene oxide) (PEO) were investigated as surface films at the air/water interface. Both classic and dendritic-like stars were prepared containing either a PS core and PEO corona or the reverse. The investigated polymers, consisting of systematic variations in architectures and compositions, were spread at the air/water interface, generating reproducible surface pressure-area isotherms. All of the films could be compressed to higher pressures than would be possible for pure PEO. For stars containing 20% or more PEO, three distinct regions appeared. At higher areas, the PEO absorbs in pancakelike structures at the interface with PS globules sitting atop. Upon compression, a pseudoplateau transition region appeared. Both regions strongly depended on PEO composition. The pancake area and the pseudoplateau width and pressure increased in a linear fashion with an increasing amount of PEO. In addition, minimum limits of PEO chain length and mass percentage were determined for observing a pseudoplateau. At small areas, the film proved less compressible, producing a rigid film in which PS dominated. Here, the film area increased with both molecular weight and the amount of PS. Comparison with pure linear PS showed the stars spread more, occupying greater areas. Among the stars, the PEO-core stars were more compact while the PS-core stars spread more. The influence of architecture in terms of the core/corona polymers and branching were also examined. The effects of architecture were subtle, proving less important than PEO chain length or mass percentage.
dc.language.isoen
dc.publisherAmerican Chemical Society
dc.subject.enPOLYMERS
dc.subject.enMORPHOLOGY
dc.subject.enBEHAVIOR
dc.subject.enCOMPRESSION
dc.subject.enAIR-WATER-INTERFACE
dc.subject.enDIBLOCK COPOLYMER MONOLAYERS
dc.subject.enPI-A ISOTHERMS
dc.subject.enPOLY(ETHYLENE OXIDE)
dc.subject.enAGGREGATION
dc.subject.enCOLLAPSE
dc.title.enPolystyrene-block-poly(ethylene oxide) stars as surface films at the air/water interface
dc.typeArticle de revue
dc.identifier.doi10.1021/la050787c
dc.subject.halChimie/Polymères
bordeaux.journalLangmuir
bordeaux.page7380-7389
bordeaux.volume21
bordeaux.hal.laboratoriesLaboratoire de Chimie des Polymères Organiques (LCPO) - UMR 5629*
bordeaux.issue16
bordeaux.institutionBordeaux INP
bordeaux.institutionUniversité de Bordeaux
bordeaux.peerReviewedoui
hal.identifierhal-00394277
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00394277v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Langmuir&rft.date=2005&rft.volume=21&rft.issue=16&rft.spage=7380-7389&rft.epage=7380-7389&rft.eissn=0743-7463&rft.issn=0743-7463&rft.au=LOGAN,%20Jennifer&MASS%C3%89,%20Pascal&GNANOU,%20Yves&TATON,%20Daniel&DURAN,%20Randolph%20S.&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record