Encapsidation of RNA-Polyelectrolyte Complexes with Amphiphilic Block Copolymers: Toward a New Self-Assembly Route
STAEDEL, Cathy
ARN : régulations naturelle et artificielle
Imagerie Moléculaire et Nanobiotechnologies - Institut Européen de Chimie et Biologie [IECB]
ARN : régulations naturelle et artificielle
Imagerie Moléculaire et Nanobiotechnologies - Institut Européen de Chimie et Biologie [IECB]
TOULMÉ, Jean-Jacques
ARN : régulations naturelle et artificielle
Imagerie Moléculaire et Nanobiotechnologies - Institut Européen de Chimie et Biologie [IECB]
ARN : régulations naturelle et artificielle
Imagerie Moléculaire et Nanobiotechnologies - Institut Européen de Chimie et Biologie [IECB]
LECOMMANDOUX, Sebastien
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
SCHATZ, Christophe
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
< Reduce
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
Language
en
Article de revue
This item was published in
Journal of the American Chemical Society. 2012, vol. 134, n° 49, p. 20189-20196
American Chemical Society
English Abstract
Amphiphilic block copolymers are molecules composed of hydrophilic and hydrophobic segments having the capacity to spontaneously self-assemble into a variety of supramolecular structures like micelles and vesicles. Here, ...Read more >
Amphiphilic block copolymers are molecules composed of hydrophilic and hydrophobic segments having the capacity to spontaneously self-assemble into a variety of supramolecular structures like micelles and vesicles. Here, we propose an original way to self-assemble amphiphilic block copolymers into a supported bilayer membrane for defined coating of nanoparticles. The heart of the method rests on a change of the amphiphilicity of the copolymer that can be turned off and on by varying the polarity of the solvent. In this condition, the assembly process can take advantage of specific molecular interactions in both organic solvent and water. While the concept potentially could be applied to any type of charged substrates, we focus our interest on the design of a new type of polymer assembly mimicking the virus morphology. A capsid-like shell of glycoprotein-mimic amphiphilic block copolymer was self-assembled around a positively charged complex of siRNA and polyethyleneimine. The process requires two steps. Block copolymers first interact with the complexes dispersed in DMSO through electrostatic interactions. Next, the increase of the water content in the medium triggers the hydrophobic effect and the concomitant self-assembly of free block copolymer molecules into a bilayer membrane at the complex surface. The higher gene silencing activity of the copolymer-modified complexes over the complexes alone shows the potential of this new type of nanoconstructs for biological applications, especially for the delivery of therapeutic biomolecules.Read less <
English Keywords
PLASMID DNA
DRUG-DELIVERY
SIRNA DELIVERY
GENE DELIVERY
NUCLEIC-ACID DELIVERY
VIRUS
POLYPLEXES
POLYMERSOMES
Spanish Keywords
VESICLES
LIPOPLEXES
Origin
Hal imported