Dynamics of low and high density microplastics in the world's largest choked coastal lagoon under contrasting meteoceanographic conditions
Langue
EN
Article de revue
Ce document a été publié dans
Continental Shelf Research. 2025-02, vol. 285, p. 105396
Résumé en anglais
The contamination by plastic waste in aquatic environments has become a global issue, scientifically reported since 1970. The size and durability of microplastics (MPs, 1 μm > 5 mm) have made these debris widely distributed ...Lire la suite >
The contamination by plastic waste in aquatic environments has become a global issue, scientifically reported since 1970. The size and durability of microplastics (MPs, 1 μm > 5 mm) have made these debris widely distributed in aquatic environments. Despite various ongoing initiatives, there is a need to fill gaps in understanding how MPs are transported from their release sources to their final destinations. Therefore, understanding the distribution and dynamics of MPs in coastal areas, such as lagoons and estuaries, which are considered continental sources of MPs to the oceans, is essential to help fill these gaps and propose alternatives for managing what is the environmental problem of the century. In this context, this study aimed to assess the transport patterns of MPs in Patos Lagoon, the largest choked coastal lagoon in the world, considering contrasting meteoceanographic conditions in the system dynamics, such as wind and discharge. Using the hydrodynamic model TELEMAC-3D and the model for plastics particles TrackMPD, simulations were performed using a type of MP polymer (Polypropylene - PP). The simulations of MP transport considered advection, dispersion and the contribution of biofilm in increasing particle density (representing high-density microplastics). The results indicated a gradient of MPs retention from north to south, with higher concentrations of MPs occurring in the northern part of the system. The central region of the lagoon showed a greater tendency for MP export towards the southern region than retention. Meanwhile, the estuary region of Patos Lagoon exhibited a tendency for export of low-density MPs free of biofilm and retention of higher-density MPs, subject to the action of the Plastisphere. Additionally, based on the results obtained from density occurrence maps, it was possible to suggest potential accumulation areas of MPs throughout the lagoon system, reinforcing that the system can act as a sink in specific regions.< Réduire
Mots clés en anglais
plastic contamination
plastic accumulation
hot spots
estuaries
coastal lagoons
numerical modelling