Afficher la notice abrégée

dc.rights.licenseopen
hal.structure.identifierBiological Physics Department
dc.contributor.authorVUONG QUOC, Lam
hal.structure.identifierMatière et Systèmes Complexes [MSC]
dc.contributor.authorBERRET, Jean-François
hal.structure.identifierPhysicochimie des Electrolytes, Colloïdes et Sciences Analytiques [PECSA]
dc.contributor.authorFRESNAIS, Jérôme
hal.structure.identifierBiological Physics Department
dc.contributor.authorGOSSUIN, Yves
hal.structure.identifierLaboratoire de Chimie des Polymères Organiques [LCPO]
hal.structure.identifierTeam 3 LCPO : Polymer Self-Assembly & Life Sciences
dc.contributor.authorSANDRE, Olivier
dc.date.accessioned2020
dc.date.available2020
dc.date.issued2012
dc.identifier.issn2192-2640
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/20440
dc.description.abstractEnMagnetic particles are very efficient magnetic resonance imaging (MRI) contrast agents. In recent years, chemists have unleashed their imagination to design multi-functional nanoprobes for biomedical applications including MRI contrast enhancement. This study is focused on the direct relationship between the size and magnetization of the particles and their nuclear magnetic resonance relaxation properties, which condition their efficiency. Experimental relaxation results with maghemite particles exhibiting a wide range of sizes and magnetizations are compared to previously published data and to well-established relaxation theories with a good agreement. This allows deriving the experimental master curve of the transverse relaxivity versus particle size and to predict the MRI contrast efficiency of any type of magnetic nanoparticles. This prediction only requires the knowledge of the size of the particles impermeable to water protons and the saturation magnetization of the corresponding volume. To predict the T-2 relaxation efficiency of magnetic single crystals, the crystal size and magnetization - obtained through a single Langevin fit of a magnetization curve - is the only information needed. For contrast agents made of several magnetic cores assembled into various geometries (dilute fractal aggregates, dense spherical clusters, core-shell micelles, hollow vesicles.), one needs to know a third parameter, namely the intra-aggregate volume fraction occupied by the magnetic materials relatively to the whole (hydrodynamic) sphere. Finally a calculation of the maximum achievable relaxation effect - and the size needed to reach this maximum - is performed for different cases: maghemite single crystals and dense clusters, core-shell particles (oxide layer around a metallic core) and zinc-manganese ferrite crystals.
dc.language.isoen
dc.publisherWiley
dc.subjectFERROFLUIDS
dc.subjectCONTRAST ENHANCEMENT
dc.subjectRELAXATION
dc.subjectSIZE DISTRIBUTION
dc.subjectSUPERPARAMAGNETIC PARTICLES
dc.subjectCONTRAST AGENTS
dc.subjectNANOPARTICLE DESIGN
dc.subjectIRON-OXIDE NANOPARTICLES
dc.subjectRELAXOMETRY
dc.subjectPOLYMERS
dc.title.enA Universal Scaling Law to Predict the Efficiency of Magnetic Nanoparticles as MRI T2-Contrast Agents
dc.typeArticle de revue
dc.identifier.doi10.1002/adhm.201200078
dc.subject.halPhysique [physics]/Physique [physics]/Biophysique [physics.bio-ph]
dc.subject.halChimie/Chimie théorique et/ou physique
dc.subject.halPhysique [physics]/Matière Condensée [cond-mat]/Matière Molle [cond-mat.soft]
dc.subject.halChimie/Matériaux
dc.identifier.arxiv1311.6022
bordeaux.journalAdvanced Healthcare Materials
bordeaux.page502-512
bordeaux.volume1
bordeaux.hal.laboratoriesLaboratoire de Chimie des Polymères Organiques (LCPO) - UMR 5629*
bordeaux.issue4
bordeaux.institutionBordeaux INP
bordeaux.institutionUniversité de Bordeaux
bordeaux.peerReviewedoui
hal.identifierhal-00817231
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00817231v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Advanced%20Healthcare%20Materials&rft.date=2012&rft.volume=1&rft.issue=4&rft.spage=502-512&rft.epage=502-512&rft.eissn=2192-2640&rft.issn=2192-2640&rft.au=VUONG%20QUOC,%20Lam&BERRET,%20Jean-Fran%C3%A7ois&FRESNAIS,%20J%C3%A9r%C3%B4me&GOSSUIN,%20Yves&SANDRE,%20Olivier&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée