Versatile design of amphiphilic glycopolypeptides nanoparticles for lectin recognition
GAUCHE, Cony
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
Laboratoire de Chimie des Polymères Organiques [LCPO]
LECOMMANDOUX, Sebastien
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
GAUCHE, Cony
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
Laboratoire de Chimie des Polymères Organiques [LCPO]
LECOMMANDOUX, Sebastien
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
< Reduce
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
Language
en
Article de revue
This item was published in
Polymer. 2016, vol. 107, p. 474-484
Elsevier
English Abstract
The understanding of glycopolymer-based nanostructures formation and their lectin binding properties are of great interest to the development of drug delivery systems and other biological applications. Herein, glycosylated ...Read more >
The understanding of glycopolymer-based nanostructures formation and their lectin binding properties are of great interest to the development of drug delivery systems and other biological applications. Herein, glycosylated polypeptides were synthesized from a clickable poly(L-lysine)-b-poly(benzyl-L-glutamate) copolypeptide, obtained by a sequential ring opening polymerization. The clickable poly(L-lysine) chain was completely functionalized by introducing galactose and lactose moieties on the copolypeptide's hydrophilic block, aiming specific lectin recognition. Spheres, pearl-necklace and worm-like structures prepared from poly(L-lysine)-b-poly(benzyl-L-glutamate) copolypeptides were obtained after nanoprecipitation, depending on the hydrophilic block functionalization and the hydrophobic block length. Specific interaction between the sugars on the micelles' surface with RCA120 lectin was observed with the PBLG40-based nano-structures. However, unexpected and unspecific interactions were observed with some nanostructures, showing the importance of the chemical functionalization and nanostructure stabilization. Such a synthetic approach can be used to develop any other amphiphilic and biofunctional polypeptide-based copolymers and nanoparticles.Read less <
English Keywords
Copolymer
Self-assembly
Micelles
Origin
Hal imported