Phenolic chemistry of the seagrass Zostera noltei Hornem. Part 1: First evidence of three infraspecific flavonoid chemotypes in three distinctive geographical regions
Idioma
EN
Article de revue
Este ítem está publicado en
Phytochemistry. 2018-02-01, vol. 146, p. 91-101
Resumen en inglés
The flavonoid content of Zostera noltei leaves was investigated over a broad spatial scale using chromatographic and spectroscopic techniques (HPLC-DAD, LC/MS and NMR). Samples were collected at fifteen localities covering ...Leer más >
The flavonoid content of Zostera noltei leaves was investigated over a broad spatial scale using chromatographic and spectroscopic techniques (HPLC-DAD, LC/MS and NMR). Samples were collected at fifteen localities covering Mediterranean Sea and NE Atlantic coast, and representative of three types of coastal ecosystems: mesotidal bays, coastal lagoons, and open-sea. Three geographically distinct flavonoid chemotypes were identified on the basis of their respective major compound. One is characterized by apigenin 7-sulfate (Eastern part of Gulf of Cadiz), one by diosmetin 7-sulfate (French Atlantic coast and Mediterranean Sea), and the third contained similar quantities of the above two compounds (Mauritania and South Portugal). Our results show that metabolomic profiling using a combination of analytical techniques is a tool of choice to characterize chemical phenotype accurately. This work emphasizes for the first time the spatial variability in the flavonoid chemistry of Z. noltei throughout Atlantic and Mediterranean range, and constitutes the first report of chemical races in the Zosteraceae family. This infraspecific chemical differentiation should be considered when dealing with the role of Z. noltei in coastal ecosystems or in the selection of the best population donor for Z. noltei beds restoration. Combined with molecular identification, phenolic fingerprinting might be helpful to elucidate the evolutionary history of Z. noltei.< Leer menos
Centros de investigación