Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorNAKATA, Masahiro
dc.contributor.authorYASUDA, Takumi
dc.contributor.authorMIYAMOTO, Masayuki
dc.contributor.authorKITADA, Atsushi
dc.contributor.authorOKAZAKI, Yutaka
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorODA, Reiko
dc.contributor.authorMURASE, Kuniaki
dc.contributor.authorFUKAMI, Kazuhiro
dc.date.accessioned2024-04-24T13:47:09Z
dc.date.available2024-04-24T13:47:09Z
dc.date.issued2023-01-13
dc.identifier.issn1530-6984en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/199323
dc.description.abstractEnSpatiotemporal pattern formation is dynamic self-organization widely observed in nature and drives various functions. Among these functions, chirality plays a central role. The relationship between dynamic self-organization and chirality has been an open question; therefore, the production of chiral nanomaterials by dynamic self-organization has not been achieved. Here, we show that the confinement of a two-dimensional spatiotemporal micropattern via the electrodeposition of a binary Cu alloy into a nanopore induces mirror symmetry breaking to produce a helical nanostructure of the noble-metal component although it is still not yet possible to control the handedness at this stage. This result suggests that spatiotemporal symmetry breaking functions as a mirror symmetry breaking if cylindrical pores are given as the boundary condition. This study can be a model system of how spatiotemporal symmetry breaking plays a role in mirror symmetry breaking, and it proposes a new approach to producing helical nanomaterials through dynamic selforganization.
dc.language.isoENen_US
dc.subject.ennanohelices
dc.subject.enspatiotemporal pattern
dc.subject.enelectrodeposition
dc.subject.enalloys
dc.title.enProduction of Noble-Metal Nanohelices Based on Nonlinear Dynamics in Electrodeposition of Binary Copper Alloys
dc.typeArticle de revueen_US
dc.identifier.doi10.1021/acs.nanolett.2c03512en_US
dc.subject.halPhysique [physics]en_US
bordeaux.journalNano Lettersen_US
bordeaux.page462-468en_US
bordeaux.volume23en_US
bordeaux.hal.laboratoriesCBMN : Chimie & de Biologie des Membranes & des Nano-objets - UMR 5248en_US
bordeaux.issue2en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcehal
hal.identifierhal-04274104
hal.version1
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exportfalse
workflow.import.sourcehal
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Nano%20Letters&rft.date=2023-01-13&rft.volume=23&rft.issue=2&rft.spage=462-468&rft.epage=462-468&rft.eissn=1530-6984&rft.issn=1530-6984&rft.au=NAKATA,%20Masahiro&YASUDA,%20Takumi&MIYAMOTO,%20Masayuki&KITADA,%20Atsushi&OKAZAKI,%20Yutaka&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée