Probabilistic 3D Occupancy Flow with Latent Silhouette Cues
FRANCO, Jean-Sébastien
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Visualization and manipulation of complex data on wireless mobile devices [IPARLA ]
Voir plus >
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Visualization and manipulation of complex data on wireless mobile devices [IPARLA ]
FRANCO, Jean-Sébastien
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Visualization and manipulation of complex data on wireless mobile devices [IPARLA ]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Visualization and manipulation of complex data on wireless mobile devices [IPARLA ]
POLLEFEYS, Marc
University of North Carolina [Chapel Hill] [UNC]
Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] [ETH Zürich]
< Réduire
University of North Carolina [Chapel Hill] [UNC]
Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] [ETH Zürich]
Langue
en
Communication dans un congrès
Ce document a été publié dans
CVPR 2010 - IEEE Computer Vision and Pattern Recognition, 2010-06-13, San Francisco. 2010-06-07p. 1379-1386
IEEE
Résumé en anglais
In this paper we investigate shape and motion retrieval in the context of multi-camera systems. We propose a new low-level analysis based on latent silhouette cues, particularly suited for low-texture and outdoor datasets. ...Lire la suite >
In this paper we investigate shape and motion retrieval in the context of multi-camera systems. We propose a new low-level analysis based on latent silhouette cues, particularly suited for low-texture and outdoor datasets. Our analysis does not rely on explicit surface representations, instead using an EM framework to simultaneously update a set of volumetric voxel occupancy probabilities and retrieve a best estimate of the dense 3D motion field from the last consecutively observed multi-view frame set. As the framework uses only latent, probabilistic silhouette information, the method yields a promising 3D scene analysis method robust to many sources of noise and arbitrary scene objects. It can be used as input for higher level shape modeling and structural inference tasks. We validate the approach and demonstrate its practical use for shape and motion analysis experimentally.< Réduire
Origine
Importé de halUnités de recherche