Show simple item record

dc.rights.licenseopen
hal.structure.identifierLaboratoire de l'intégration, du matériau au système [IMS]
dc.contributor.authorPALACIO VALERA, Abigail
hal.structure.identifierTeam 3 LCPO : Polymer Self-Assembly & Life Sciences
hal.structure.identifierLaboratoire de Chimie des Polymères Organiques [LCPO]
dc.contributor.authorSCHATZ, Christophe
hal.structure.identifierLaboratoire de Chimie des Polymères Organiques [LCPO]
hal.structure.identifierTeam 3 LCPO : Polymer Self-Assembly & Life Sciences
dc.contributor.authorIBARBOURE, Emmanuel
hal.structure.identifierResearch Center for Advanced Science and Technology [Tokyo] [RCAST]
dc.contributor.authorKUBO, Takaya
hal.structure.identifierResearch Center for Advanced Science and Technology [Tokyo] [RCAST]
dc.contributor.authorSEGAWA, Hiroshi
hal.structure.identifierLaboratoire de l'intégration, du matériau au système [IMS]
dc.contributor.authorCHAMBON, Sylvain
dc.date.accessioned2020
dc.date.available2020
dc.date.issued2019
dc.identifier.issn2296-598X
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/19873
dc.description.abstractEnSolvent displacement, or nanoprecipitation, is a well-known process to develop colloidal dispersions in water. Using two successive and selective nanoprecipitation steps, we developed a method to generate [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) shell on poly(3-hexylthiophene) (P3HT) core nanoparticles (P3HT@PCBM). We report herein on the understanding of the shell formation during this process. Using several techniques (dynamic light scattering, zeta-potential, photoluminescence), we evidenced that after the first solvent displacement with dimethyl sulfoxide (DMSO), the PCBM molecules still dissolved in the medium are already in close interaction with the P3HT nanoparticles (NP). Such proximity of the P3HT core with PCBM molecules in the DMSO dispersion explains why PCBM aggregates around the nanoparticles during the second solvent displacement with water. A fast electron transfer from P3HT to PCBM was identified by transient absorption spectroscopy, confirming the core-shell morphology even for low PCBM concentration. This study opens the route for the development of well-defined nano-objects dispersed in water for fabrication of organic photovoltaic devices with eco-friendly processes.
dc.language.isoen
dc.publisherFrontiers Media
dc.subject.enorganic photovoltaic
dc.subject.ennanoprecipitation
dc.subject.encore-shell
dc.subject.ensolvent displacement
dc.subject.entransient absorption spectroscopy
dc.subject.endynamic light scattering
dc.subject.enzeta potential
dc.title.enElaboration of PCBM Coated P3HT Nanoparticles: Understanding the Shell Formation
dc.typeArticle de revue
dc.identifier.doi10.3389/fenrg.2018.00146
dc.subject.halChimie/Polymères
dc.subject.halChimie/Matériaux
dc.subject.halPhysique [physics]/Matière Condensée [cond-mat]/Matière Molle [cond-mat.soft]
dc.subject.halSciences de l'ingénieur [physics]
dc.subject.halSciences de l'ingénieur [physics]/Energie électrique
dc.subject.halSciences de l'ingénieur [physics]/Micro et nanotechnologies/Microélectronique
bordeaux.journalFrontiers in Energy Research
bordeaux.volume6
bordeaux.hal.laboratoriesLaboratoire de Chimie des Polymères Organiques (LCPO) - UMR 5629*
bordeaux.institutionBordeaux INP
bordeaux.institutionUniversité de Bordeaux
bordeaux.peerReviewedoui
hal.identifierhal-02151677
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02151677v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Frontiers%20in%20Energy%20Research&rft.date=2019&rft.volume=6&rft.eissn=2296-598X&rft.issn=2296-598X&rft.au=PALACIO%20VALERA,%20Abigail&SCHATZ,%20Christophe&IBARBOURE,%20Emmanuel&KUBO,%20Takaya&SEGAWA,%20Hiroshi&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record