StarPU-MPI: Task Programming over Clusters of Machines Enhanced with Accelerators
AUMAGE, Olivier
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
FURMENTO, Nathalie
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
See more >
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
AUMAGE, Olivier
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
FURMENTO, Nathalie
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
NAMYST, Raymond
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
THIBAULT, Samuel
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
< Reduce
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Efficient runtime systems for parallel architectures [RUNTIME]
Language
en
Communication dans un congrès
This item was published in
EuroMPI 2012 - The 19th European MPI Users' Group Meeting, 2012-09-23, Vienna. 2012, vol. 7490
Springer
English Abstract
GPUs clusters are becoming widespread HPC platforms. Ex- ploiting them is however challenging, as this requires two separate paradigms (MPI and CUDA or OpenCL) and careful load balancing due to node heterogeneity. Current ...Read more >
GPUs clusters are becoming widespread HPC platforms. Ex- ploiting them is however challenging, as this requires two separate paradigms (MPI and CUDA or OpenCL) and careful load balancing due to node heterogeneity. Current paradigms usually either limit themselves to of- fload part of the computation and leave CPUs idle, or require static CPU/GPU work partitioning. We thus have previously proposed StarPU, a runtime system able to dynamically scheduling tasks within a single heterogeneous node. We show how we extended the task paradigm of StarPU with MPI to easily map the task graph on MPI clusters and automatically benefit from optimized execution.Read less <
English Keywords
Accelerators
GPUs
MPI
Task-based model
Accelerators
Origin
Hal imported