Afficher la notice abrégée

dc.rights.licenseopen
dc.contributor.authorONWUKAMIKE, Kelechukwu
hal.structure.identifierLaboratoire de Chimie des Polymères Organiques [LCPO]
hal.structure.identifierTeam 2 LCPO : Biopolymers & Bio-sourced Polymers
dc.contributor.authorGRELIER, Stéphane
hal.structure.identifierLaboratoire de Chimie des Polymères Organiques [LCPO]
hal.structure.identifierTeam 2 LCPO : Biopolymers & Bio-sourced Polymers
dc.contributor.authorGRAU, Etienne
IDREF: 187909261
hal.structure.identifierLaboratoire de Chimie des Polymères Organiques [LCPO]
hal.structure.identifierTeam 2 LCPO : Biopolymers & Bio-sourced Polymers
dc.contributor.authorCRAMAIL, Henri
hal.structure.identifierKarlsruhe Institute of Technology [KIT]
dc.contributor.authorMEIER, Michael
dc.date.accessioned2020
dc.date.available2020
dc.date.issued2018
dc.identifier.issn2168-0485
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/19802
dc.description.abstractEnThe direct transesterification of cellulose with high oleic sunflower oil, without any activating steps, was achieved in a DBU-CO2 solvent system to obtain fatty acid cellulose esters (FACEs). Optimization of the reaction parameters (i.e., concentration, temperature, plant oil equivalents, as well as reaction time) was performed using microcrystalline cellulose (MCC) and followed by Fourier-transform infrared spectroscopy (FT-IR). Further confirmation of the FACEs structures was achieved via 1H and 13C NMR, and 31P NMR revealed DS (degree of substitution) values of up to 1.59. The optimized conditions were successfully applied to filter paper (FP) and cellulose pulp (CP). Characterization of the FACEs showed improved thermal stability after transesterification reactions (up to 30 °C by TGA) and a single broad 2θ peak around 19.8° by XRD, which is characteristic of a more amorphous material. In addition, films were prepared via solvent casting and their mechanical properties obtained from tensile strength measurements, revealing an elastic modulus (E) of up to 478 MPa with elongation of about 35% and a maximum stress of 22 MPa. The film morphology was studied by scanning electron microscopy (SEM) and showed homogeneous surfaces. In this report, we thus demonstrated a more sustainable approach toward FACEs that combines cellulose and plant oil (two renewable resources) directly, resulting in fully renewable polymeric materials with appealing properties.
dc.language.isoen
dc.publisherAmerican Chemical Society
dc.subject.enCellulose Transesterification Switchable solvent Fatty acid Plant oil Renewable polymer
dc.title.enSustainable Transesterification of Cellulose with High Oleic Sunflower Oil in a DBU-CO 2 Switchable Solvent
dc.typeArticle de revue
dc.identifier.doi10.1021/acssuschemeng.8b01186
dc.subject.halChimie/Polymères
dc.subject.halChimie/Matériaux
dc.subject.halChimie
dc.subject.halPhysique [physics]/Matière Condensée [cond-mat]/Science des matériaux [cond-mat.mtrl-sci]
bordeaux.journalACS Sustainable Chemistry & Engineering
bordeaux.page8826 - 8835
bordeaux.volume6
bordeaux.hal.laboratoriesLaboratoire de Chimie des Polymères Organiques (LCPO) - UMR 5629*
bordeaux.issue7
bordeaux.institutionBordeaux INP
bordeaux.institutionUniversité de Bordeaux
bordeaux.peerReviewedoui
hal.identifierhal-01917955
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01917955v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=ACS%20Sustainable%20Chemistry%20&%20Engineering&rft.date=2018&rft.volume=6&rft.issue=7&rft.spage=8826%20-%208835&rft.epage=8826%20-%208835&rft.eissn=2168-0485&rft.issn=2168-0485&rft.au=ONWUKAMIKE,%20Kelechukwu&GRELIER,%20St%C3%A9phane&GRAU,%20Etienne&CRAMAIL,%20Henri&MEIER,%20Michael&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée