Network Verification via Routing Table Queries
BAMPAS, Evangelos
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Leer más >
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
BAMPAS, Evangelos
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
GUALÀ, Luciano
Università degli Studi di Roma Tor Vergata [Roma, Italia] = University of Rome Tor Vergata [Rome, Italy] = Université de Rome Tor Vergata [Rome, Italie]
Università degli Studi di Roma Tor Vergata [Roma, Italia] = University of Rome Tor Vergata [Rome, Italy] = Université de Rome Tor Vergata [Rome, Italie]
KLASING, Ralf
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
PROIETTI, Guido
Dipartimento di Informatica [Italy] [DI]
Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti” [IASI]
< Leer menos
Dipartimento di Informatica [Italy] [DI]
Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti” [IASI]
Idioma
en
Communication dans un congrès
Este ítem está publicado en
SIROCCO 2011, 2011-06, Gdańsk. 2011, vol. 6796, p. 270--281
Resumen en inglés
We address the problem of verifying the accuracy of a map of a network by making as few measurements as possible on its nodes. This task can be formalized as an optimization problem that, given a graph G = (V,E), and a ...Leer más >
We address the problem of verifying the accuracy of a map of a network by making as few measurements as possible on its nodes. This task can be formalized as an optimization problem that, given a graph G = (V,E), and a query model specifying the information returned by a query at a node, asks for finding a minimum-size subset of nodes of G to be queried so as to univocally identify G. This problem has been faced w.r.t. a couple of query models assuming that a node had some global knowledge about the network. Here, we propose a new query model based on the local knowledge a node instead usually has. Quite naturally, we assume that a query at a given node returns the associated routing table, i.e., a set of entries which provides, for each destination node, a corresponding (set of) first-hop node(s) along an underlying shortest path. First, we show that any network of n nodes needs Ω(loglogn) queries to be verified. Then, we prove that there is no o(logn)-approximation algorithm for the problem, unless \sf P=\sf NP , even for networks of diameter 2. On the positive side, we provide an O(logn)-approximation algorithm to verify a network of diameter 2, and we give exact polynomial-time algorithms for paths, trees, and cycles of even length.< Leer menos
Orígen
Importado de HalCentros de investigación