Memory Optimization to Build a Schur Complement in an Hybrid Solver
CASADEI, Astrid
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
RAMET, Pierre
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
CASADEI, Astrid
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
RAMET, Pierre
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
< Leer menos
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Idioma
en
Rapport
Este ítem está publicado en
2012p. 11
Resumen en inglés
Solving linear system $Ax=b$ in parallel where $A$ is a large sparse matrix is a very recurrent problem in numerical simulations. One of the state-of-the-art most promising algorithm is the hybrid method based on domain ...Leer más >
Solving linear system $Ax=b$ in parallel where $A$ is a large sparse matrix is a very recurrent problem in numerical simulations. One of the state-of-the-art most promising algorithm is the hybrid method based on domain decomposition and Schur complement. In this method, a direct solver is used as a subroutine on each subdomain matrix. This approach is subject to serious memory overhead. In this paper, we investigate new techniques to reduce memory consumption during the build of the Schur complement by a direct solver. Our method allows memory peak reduction from 10% to 30% on each processus for typical test cases.< Leer menos
Orígen
Importado de HalCentros de investigación