Show simple item record

dc.rights.licenseopen
hal.structure.identifierLinköping University [LIU]
dc.contributor.authorFABIANO, Simone
hal.structure.identifierLaboratoire de Chimie des Polymères Organiques [LCPO]
hal.structure.identifierTeam 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
dc.contributor.authorPETSAGKOURAKIS, Ioannis
hal.structure.identifierLaboratoire de Chimie des Polymères Organiques [LCPO]
hal.structure.identifierTeam 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
dc.contributor.authorFLEURY, Guillaume
hal.structure.identifierLaboratoire de Chimie des Polymères Organiques [LCPO]
hal.structure.identifierTeam 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
dc.contributor.authorHADZIIOANNOU, Georges
hal.structure.identifierLinköping University [LIU]
dc.contributor.authorCRISPIN, Xavier
dc.date.accessioned2020
dc.date.available2020
dc.date.issued2017
dc.identifier.isbn9783527698110
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/19605
dc.description.abstractEnThermoelectric generators (TEGs) convert heat into electricity, and could contribute to the world's increasing energy demand by harvesting low-energy-density heat, such as waste heat produced during the conversion of fossil fuels to electricity or heat from solar radiation. The efficiency of the heat-electricity conversion is dictated by the material properties. This chapter presents the key material properties that help define the heat-to-electricity conversion efficiency. TEG is an electronic device that uses the Seebeck effect to convert a heat flow into an electron flow. The Seebeck coefficient is intimately related to the electronic structure and mobility of the charge carrier. Controlling the shape of the density of state at the Fermi level in a material should enable tuning its Seebeck coefficient. Hence, it is crucial to understand the electronic structure of conducting polymers. The chapter summarizes how the electrical conductivity, the Seebeck coefficient, and the thermal conductivity of conducting polymers depend on their oxidation level.
dc.language.isoen
dc.source.titleThermoelectric Energy Conversion: Basic Concepts and Device Applications
dc.title.enOrganic Thermoelectric Materials
dc.typeChapitre d'ouvrage
dc.identifier.doi10.1002/9783527698110.ch3
dc.subject.halChimie/Polymères
bordeaux.hal.laboratoriesLaboratoire de Chimie des Polymères Organiques (LCPO) - UMR 5629*
bordeaux.institutionBordeaux INP
bordeaux.institutionUniversité de Bordeaux
hal.identifierhal-02924173
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02924173v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.btitle=Thermoelectric%20Energy%20Conversion:%20Basic%20Concepts%20and%20Device%20Applications&rft.date=2017&rft.au=FABIANO,%20Simone&PETSAGKOURAKIS,%20Ioannis&FLEURY,%20Guillaume&HADZIIOANNOU,%20Georges&CRISPIN,%20Xavier&rft.isbn=9783527698110&rft.genre=unknown


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record