Environmental control of land-atmosphere CO 2 fluxes from temperate ecosystems: a statistical approach based on homogenized time series from five land-use types
MOREAUX, Virginie
Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine [Bordeaux Sciences Agro]
Institut des Géosciences de l’Environnement [IGE]
Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine [Bordeaux Sciences Agro]
Institut des Géosciences de l’Environnement [IGE]
LONGDOZ, Bernard
Gembloux Agro-Bio Tech [Faculté universitaire des sciences agronomiques de Gembloux] [[FUSAGx]]
See more >
Gembloux Agro-Bio Tech [Faculté universitaire des sciences agronomiques de Gembloux] [[FUSAGx]]
MOREAUX, Virginie
Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine [Bordeaux Sciences Agro]
Institut des Géosciences de l’Environnement [IGE]
Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine [Bordeaux Sciences Agro]
Institut des Géosciences de l’Environnement [IGE]
LONGDOZ, Bernard
Gembloux Agro-Bio Tech [Faculté universitaire des sciences agronomiques de Gembloux] [[FUSAGx]]
Gembloux Agro-Bio Tech [Faculté universitaire des sciences agronomiques de Gembloux] [[FUSAGx]]
LOUSTAU, Denis
Interactions Sol Plante Atmosphère [UMR ISPA]
Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine [Bordeaux Sciences Agro]
< Reduce
Interactions Sol Plante Atmosphère [UMR ISPA]
Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine [Bordeaux Sciences Agro]
Language
en
Article de revue
This item was published in
Tellus B - Chemical and Physical Meteorology. 2020-01-01, vol. 72, n° 1, p. 1-25
Taylor & Francis
English Abstract
(2020) Environmental control of land-atmosphere CO 2 fluxes from temperate ecosystems: a statistical approach based on homogenized time series from five land-use types, ABSTRACT We assembled homogenized long-term time ...Read more >
(2020) Environmental control of land-atmosphere CO 2 fluxes from temperate ecosystems: a statistical approach based on homogenized time series from five land-use types, ABSTRACT We assembled homogenized long-term time series, up to 19 years, of measurements of net ecosystem exchange of CO 2 (NEE) and its partitioning between gross primary production (GPP) and respiration (R eco) for five different ecosystems representing the main plant functional types (PFTs) in France. Part of these data was analyzed to determine the influence of the main environmental variables on carbon fluxes between temperate ecosystems and the atmosphere, and to investigate the temporal patterns of their variations. A multi-temporal statistical analysis of the time series was conducted using random forest (RF) and wavelet coherence approaches. The RF analysis showed that, in all ecosystems, the incident solar radiation was highly correlated with GPP and that GPP was better correlated with the temporal variations of NEE than R eco. The air temperature was the second most important driver in ecosystems with seasonal foliage, i.e., deciduous forest, cropland and grassland; whereas variables related to air or soil drought were prominent in evergreen forest sites. The environmental control on CO 2 fluxes was tighter at high frequency suggesting an increased resilience to environmental variations at longer time spans. The spectral analysis performed on three of the five sites selected revealed contrasting temporal patterns of the cross-coherence between CO 2 fluxes and climate variables among ecosystems; these were related to the respective PFT, management and soil conditions. In all PFTs, the power spectrum of GPP was well correlated with NEE and clearly different from R eco. The spectral correlation analysis showed that the canopy phenology and disturbance regime condition the spectral correlation patterns of GPP and R eco with the soil moisture and atmospheric vapour deficit.Read less <
English Keywords
Net CO2 ecosystem exchange
Ecosystem respiration
Gross primary production
spectral analysis
random forest analysis
European Project
Readiness of ICOS for necessities of integrated global observations
ANR Project
Managing and Reporting of Greenhouse Gas Emissions and Carbon Sequestration in Different Landscape Mosaics
Origin
Hal imported