Energy, water and carbon exchanges in managed forest ecosystems: description, sensitivity analysis and evaluation of the INRAE GO+ model, version 3.0
MOREAUX, Virginie
Interactions Sol Plante Atmosphère [UMR ISPA]
Institut des Géosciences de l’Environnement [IGE]
Leer más >
Interactions Sol Plante Atmosphère [UMR ISPA]
Institut des Géosciences de l’Environnement [IGE]
MOREAUX, Virginie
Interactions Sol Plante Atmosphère [UMR ISPA]
Institut des Géosciences de l’Environnement [IGE]
Interactions Sol Plante Atmosphère [UMR ISPA]
Institut des Géosciences de l’Environnement [IGE]
VEZY, Rémi
Botanique et Modélisation de l'Architecture des Plantes et des Végétations [UMR AMAP]
Département Systèmes Biologiques [Cirad-BIOS]
Botanique et Modélisation de l'Architecture des Plantes et des Végétations [UMR AMAP]
Département Systèmes Biologiques [Cirad-BIOS]
ROUPSARD, Olivier
Ecologie fonctionnelle et biogéochimie des sols et des agro-écosystèmes [UMR Eco&Sols]
Département Performances des systèmes de production et de transformation tropicaux [Cirad-PERSYST]
< Leer menos
Ecologie fonctionnelle et biogéochimie des sols et des agro-écosystèmes [UMR Eco&Sols]
Département Performances des systèmes de production et de transformation tropicaux [Cirad-PERSYST]
Idioma
en
Article de revue
Este ítem está publicado en
Geoscientific Model Development Discussions. 2020, vol. 13, n° 12, p. 5973-6009
Copernicus Publ
Resumen en inglés
The mechanistic model GO+ describes the functioning and growth of managed forests based upon biophysical and biogeochemical processes. The biophysical and biogeochemical processes included are modelled using standard ...Leer más >
The mechanistic model GO+ describes the functioning and growth of managed forests based upon biophysical and biogeochemical processes. The biophysical and biogeochemical processes included are modelled using standard formulations of radiative transfer, convective heat exchange, evapotranspiration, photosynthesis, respiration, plant phenology, growth and mortality, biomass nutrient content, and soil carbon dynamics. The forest ecosystem is modelled as three layers, namely the tree overstorey, understorey and soil. The vegetation layers include stems, branches and foliage and are partitioned dynamically between sunlit and shaded fractions. The soil carbon submodel is an adaption of the Roth-C model to simulate the impact of forest operations. The model runs at an hourly time step. It represents a forest stand covering typically 1 ha and can be straightforwardly upscaled across gridded data at regional, country or continental levels. GO+ accounts for both the immediate and long-term impacts of forest operations on energy, water and carbon exchanges within the soil–vegetation–atmosphere continuum. It includes exhaustive and versatile descriptions of management operations (soil preparation, regeneration, vegetation control, selective thinning, clear-cutting, coppicing, etc.), thus permitting the effects of a wide variety of forest management strategies to be estimated: from close to nature to intensive. This paper examines the sensitivity of the model to its main parameters and estimates how errors in parameter values are propagated into the predicted values of its main output variables.The sensitivity analysis demonstrates an interaction between the sensitivity of variables, with the climate and soil hydraulic properties being dominant under dry conditions but the leaf biochemical properties being most influential with wet soil. The sensitivity profile of the model changes from short to long timescales due to the cumulative effects of the fluxes of carbon, energy and water on the stand growth and canopy structure. Apart from a few specific cases, the model simulations are close to the values of the observations of atmospheric exchanges, tree growth, and soil carbon and water stock changes monitored over Douglas fir, European beech and pine forests of different ages. We also illustrate the capacity of the GO+ model to simulate the provision of key ecosystem services, such as the long-term storage of carbon in biomass and soil under various management and climate scenarios.< Leer menos
Palabras clave en inglés
3 ORGANIZATIONAL SCALES
ENVIRONMENT SIMULATOR JULES
BEECH FAGUS-SYLVATICA
PINUS-PINASTER AIT.
MARITIME PINE
CLIMATE-CHANGE
SOIL CARBON
STOMATAL CONDUCTANCE
SAP-FLOW
PHOTOSYNTHETIC CAPACITY
Proyecto europeo
Readiness of ICOS for necessities of integrated global observations
Proyecto ANR
Modélisation pour l'accompagnement des ACteurs, vers l'Adaptation des Couverts pérennes ou agroforestiers aux Changements globaux
Orígen
Importado de HalCentros de investigación