Bounded cosine functions close to continuous scalar bounded cosine functions
Language
en
Article de revue
This item was published in
Integral Equations Operator Theory. 2016, vol. 85, n° 3, p. 347-357
English Abstract
Let $(C(t))_{t \in R}$ be a cosine function in a unital Banach algebra. We show that if $sup_{t\in R}\Vert C(t)-cos(t)\Vert < 2$ for some continuous scalar bounded cosine function $(c(t))_{t\in \R},$ then the closed ...Read more >
Let $(C(t))_{t \in R}$ be a cosine function in a unital Banach algebra. We show that if $sup_{t\in R}\Vert C(t)-cos(t)\Vert < 2$ for some continuous scalar bounded cosine function $(c(t))_{t\in \R},$ then the closed subalgebra generated by $(C(t))_{t\in R}$ is isomorphic to $\C^k$ for some positive integer $k.$ If, further, $sup_{t\in \R}\Vert C(t)-cos(t)\Vert < {8\over 3\sqrt 3},$ or if $c(t)=I$, then $C(t)=c(t)$ for $t\in R.$Read less <
English Keywords
scalar cosine function
Secondary 26A99
47D09
commutative local Banach algebra AMS classification : Primary 46J45
Cosine function
Origin
Hal imported