Adaptive multistep time discretization and linearization based on a posteriori estimates for the Richards equation
COUDIÈRE, Yves
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
COUDIÈRE, Yves
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
< Reduce
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
Language
en
Communication dans un congrès
This item was published in
SIAM Conference on Mathematical and Computational Issues in the Geosciences, 2015-06-29, Stanford. 2015
English Abstract
We derive a posteriori error estimates based on the dual norm of the residual of the Richards equation. The error is decomposed into space, time, and linearization terms. Error estimators are computed with reconstructions ...Read more >
We derive a posteriori error estimates based on the dual norm of the residual of the Richards equation. The error is decomposed into space, time, and linearization terms. Error estimators are computed with reconstructions especially designed for a multistep Discrete Duality Finite Volume scheme. We stop the fixed-point iterations when the linearization error becomes negligible, and we choose the time step to balance the time and space errors. Results are presented to several test cases.Read less <
English Keywords
discrete duality finite volume reconstructions
Computable error estimators
error balancing
Origin
Hal imported