Show simple item record

hal.structure.identifierModélisation Mathématique pour l'Oncologie [MONC]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorLEGUÈBE, Michaël
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierModélisation Mathématique pour l'Oncologie [MONC]
dc.contributor.authorPOIGNARD, Clair
hal.structure.identifierModeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorWEYNANS, Lisl
dc.date.created2015
dc.date.issued2015-07
dc.identifier.issn0021-9991
dc.description.abstractEnIn this paper, we present a new finite differences method to simulate electropermeabilization models, like the model of Neu and Krassowska or the recent model of Kavian et al. These models are based on the evolution of the electric potential in a cell embedded in a conducting medium. The main feature lies in the transmission of the voltage potential across the cell membrane: the jump of the potential is proportional to the normal flux thanks to the well-known Kirchoff law. An adapted scheme is thus necessary to accurately simulate the voltage potential in the whole cell, notably at the membrane separating the cell from the outer medium. We present a second-order finite differences scheme in the spirit of the method introduced by Cisternino and Weynans for elliptic problems with immersed interfaces. This is a Cartesian grid method based on the accurate discretization of the fluxes at the interface, through the use of additional interface unknowns. The main novelty of our present work lies in the fact that the jump of the potential is proportional to the flux, and therefore is not explicitly known. The original use of interface unknowns makes it possible to discretize the transmission conditions with enough accuracy to obtain a second-order spatial convergence. We prove the second-order spatial convergence in the stationary linear one-dimensional case, and the first-order temporal convergence for the dynamical non-linear model in one dimension. We then perform numerical experiments in two dimensions that corroborate these results.
dc.language.isoen
dc.publisherElsevier
dc.subject.enFinite differences on Cartesian grids
dc.subject.enInterface transmission conditions
dc.subject.enTruncation error
dc.subject.enCell modeling
dc.title.enA second-order Cartesian method for the simulation of electropermeabilization cell models
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jcp.2015.03.028
dc.subject.halMathématiques [math]/Analyse numérique [math.NA]
bordeaux.journalJournal of Computational Physics
bordeaux.page26
bordeaux.volume292
bordeaux.peerReviewedoui
hal.identifierhal-01158377
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01158377v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Computational%20Physics&rft.date=2015-07&rft.volume=292&rft.spage=26&rft.epage=26&rft.eissn=0021-9991&rft.issn=0021-9991&rft.au=LEGU%C3%88BE,%20Micha%C3%ABl&POIGNARD,%20Clair&WEYNANS,%20Lisl&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record