ClustGeo : Classification Ascendante Hiérarchique (CAH) avec contraintes de proximitté géographique
CHAVENT, Marie
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
LABENNE, Amaury
Quality control and dynamic reliability [CQFD]
Environnement, territoires et infrastructures [UR ETBX]
Leer más >
Quality control and dynamic reliability [CQFD]
Environnement, territoires et infrastructures [UR ETBX]
CHAVENT, Marie
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
LABENNE, Amaury
Quality control and dynamic reliability [CQFD]
Environnement, territoires et infrastructures [UR ETBX]
Quality control and dynamic reliability [CQFD]
Environnement, territoires et infrastructures [UR ETBX]
SARACCO, Jerome
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Ecole Nationale Supérieure de Cognitique [ENSC]
< Leer menos
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Ecole Nationale Supérieure de Cognitique [ENSC]
Idioma
fr
Communication dans un congrès
Este ítem está publicado en
47èmes Journées de Statistique de la SFdS, 2015-06-01, Lille.
Resumen en inglés
Hierarchical Ascendant Clustering (HAC) is a well-known method of individual clustering. This method aims to bring together individuals who are similar regarding to variables which describe them. But when individuals are ...Leer más >
Hierarchical Ascendant Clustering (HAC) is a well-known method of individual clustering. This method aims to bring together individuals who are similar regarding to variables which describe them. But when individuals are geographical units, the user may wish geographically close individuals to be put in same clusters and that, without too much deteriorating the quality of the partition. The proposed ClustGeo method allows geographical constraints of proximity to be taken into account within the HAC. For that purpose, a new Ward homogeneity criterion based on two different matrices of distances is proposed.< Leer menos
Orígen
Importado de HalCentros de investigación