Solvability analysis and numerical approximation of linearized cardiac electromechanics
ANDREIANOV, Boris
Laboratoire de Mathématiques et Physique Théorique [LMPT]
Laboratoire de Mathématiques de Besançon (UMR 6623) [LMB]
Institut de Mathématiques de Bordeaux [IMB]
Laboratoire de Mathématiques et Physique Théorique [LMPT]
Laboratoire de Mathématiques de Besançon (UMR 6623) [LMB]
Institut de Mathématiques de Bordeaux [IMB]
BENDAHMANE, Mostafa
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
QUARTERONI, Alfio
Modeling and Scientific Computing [Milano] [MOX]
Chair of Modelling and Scientific Computing [CMCS]
Institut de Mathématiques de Bordeaux [IMB]
Leer más >
Modeling and Scientific Computing [Milano] [MOX]
Chair of Modelling and Scientific Computing [CMCS]
Institut de Mathématiques de Bordeaux [IMB]
ANDREIANOV, Boris
Laboratoire de Mathématiques et Physique Théorique [LMPT]
Laboratoire de Mathématiques de Besançon (UMR 6623) [LMB]
Institut de Mathématiques de Bordeaux [IMB]
Laboratoire de Mathématiques et Physique Théorique [LMPT]
Laboratoire de Mathématiques de Besançon (UMR 6623) [LMB]
Institut de Mathématiques de Bordeaux [IMB]
BENDAHMANE, Mostafa
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
QUARTERONI, Alfio
Modeling and Scientific Computing [Milano] [MOX]
Chair of Modelling and Scientific Computing [CMCS]
Institut de Mathématiques de Bordeaux [IMB]
Modeling and Scientific Computing [Milano] [MOX]
Chair of Modelling and Scientific Computing [CMCS]
Institut de Mathématiques de Bordeaux [IMB]
RUIZ-BAIER, Ricardo
Ecole Polytechnique Fédérale de Lausanne [EPFL]
Institut de Mathématiques de Bordeaux [IMB]
< Leer menos
Ecole Polytechnique Fédérale de Lausanne [EPFL]
Institut de Mathématiques de Bordeaux [IMB]
Idioma
en
Article de revue
Este ítem está publicado en
Mathematical Models and Methods in Applied Sciences. 2015
World Scientific Publishing
Resumen en inglés
This paper is concerned with the mathematical analysis of a coupled elliptic-parabolic system modeling the interaction between the propagation of electric potential and subsequent deformation of the cardiac tissue. The ...Leer más >
This paper is concerned with the mathematical analysis of a coupled elliptic-parabolic system modeling the interaction between the propagation of electric potential and subsequent deformation of the cardiac tissue. The problem consists in a reaction-diusion system governing the dynamics of ionic quantities, intra and extra-cellular potentials, and the linearized elasticity equations are adopted to describe the motion of an incompressible material. The coupling between muscle contraction, biochemical reactions and electric activity is introduced with a so-called active strain decomposition framework, where the material gradient of deformation is split into an active (electrophysiology-dependent) part and an elastic (passive) one. Under the assumption of linearized elastic behavior and a truncation of the updated nonlinear diusivities, we prove existence of weak solutions to the underlying coupled reaction-diusion system and uniqueness of regular solutions. The proof of existence is based on a combination of parabolic regularization, the Faedo-Galerkin method, and the monotonicity-compactness method of J.L. Lions. A finite element formulation is also introduced, for which we establish existence of discrete solutions and show convergence to a weak solution of the original problem. We close with a numerical example illustrating the convergence of the method and some features of the model.< Leer menos
Palabras clave en inglés
Weak solutions
Active deformation
Electro-mechanical coupling
Bidomain equations
Weak compactness method
Weak-strong uniqueness
Finite element approximation
Convergence of approximations
Orígen
Importado de HalCentros de investigación