a posteriori stabilized sixth-order finite volume scheme for one-dimensional steady-state hyperbolic equations
LOUBÈRE, Raphaël
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
LOUBÈRE, Raphaël
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
< Leer menos
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
Idioma
en
Document de travail - Pré-publication
Resumen en inglés
We propose a new family of finite volume high-accurate numerical schemes devoted to solve one-dimensional steady-state hyperbolic systems. High-accuracy (up to the sixth-order presently) is achieved thanks to polynomial ...Leer más >
We propose a new family of finite volume high-accurate numerical schemes devoted to solve one-dimensional steady-state hyperbolic systems. High-accuracy (up to the sixth-order presently) is achieved thanks to polynomial reconstructions while stability is provided with an a posteriori MOOD method which control the cell polynomial degree for eliminating non-physical oscillations in the vicinity of discontinuities. Such a procedure demands the determination of a chain detector to discriminate between troubled and valid cells, a cascade of polynomial degrees to be successively tested when oscillations are detected, and a parachute scheme corresponding to the last, viscous, and robust scheme of the cascade. Experimented on linear, Burgers', and Euler equations, we demonstrate that the schemes manage to retrieve smooth solutions with optimal order of accuracy but also irregular solutions without spurious oscillations.< Leer menos
Palabras clave en inglés
steady-state
hyperbolic equations
finite volume
high-order
MOOD
Orígen
Importado de HalCentros de investigación