Cyclicity in weighted $\ell^p$ spaces
Idioma
en
Document de travail - Pré-publication
Resumen en inglés
We study the cyclicity in weighted $\ell^p(\mathbb{Z})$ spaces. For $p \geq 1$ and $\beta \geq 0$, let $\ell^p_\beta(\mathbb{Z})$ be the space of sequences $u=(u_n)_{n\in \mathbb{Z}}$ such that $(u_n |n|^{\beta})\in ...Leer más >
We study the cyclicity in weighted $\ell^p(\mathbb{Z})$ spaces. For $p \geq 1$ and $\beta \geq 0$, let $\ell^p_\beta(\mathbb{Z})$ be the space of sequences $u=(u_n)_{n\in \mathbb{Z}}$ such that $(u_n |n|^{\beta})\in \ell^p(\mathbb{Z}) $. We obtain both necessary conditions and sufficient conditions for $u$ to be cyclic in $\ell^p_\beta(\mathbb{Z})$, in other words, for $ \{(u_{n+k})_{n \in \mathbb{Z}},~ k \in \mathbb{Z} \}$ to span a dense subspace of $\ell^p_\beta(\mathbb{Z})$. The conditions are given in terms of the Hausdorff dimension and the capacity of the zero set of the Fourier transform of $u$.< Leer menos
Palabras clave en inglés
cyclicity
weighted $\ell^p$ spaces
capacity
Orígen
Importado de HalCentros de investigación